TVSSC COMMON REVISION EXAMINATION-2019-2020 MATHEMATICS (041) MARKING SCHEME

Class : X

Q. No.	EXPECTED ANSWERS					
	SECTION - A					
1.	Option (d)	(1)				
2.	Option (a)	(1)				
3.	Option (b)	(1)				
4.	Option (c)	(1)				
5.	Option (a)	(1)				
6.	Option (d)	(1)				
7.	Option (c)	(1)				
8.	Option (b)	(1)				
9.	Option (a)	(1)				
10.	Option (d)	(1)				
11.	$2\pi rh + \pi rl \text{ OR } \pi r(2h+l)$	(1)				
12.	$\alpha + \beta = \frac{3}{k}$	(1)				
	$\alpha\beta = \frac{2k}{k} = 2$					
	$\alpha + \beta = \alpha \beta$					
	$\frac{1}{k} = 2$					
	$\kappa = \frac{1}{2}$ (OR)					
	No real roots					

13.	AB = 15 cm	(1)
14.	n = 30	(1)
15.	$\frac{3}{11}$	(1)
16.	Let θ be quotient by n is divided by 3.	
	Divident = Divisor x Quotient + Remainder	1/
	n = 9 x Q + 7	/2
	n = 9Q + 7	
	Now 3n – 1	
	= 3(9Q + 7) - 1	
	= 27Q + 21 - 1	
	= 27Q + 20	
	= 27Q + 18 + 2	
	When 3n – 1 is divided by 9	
	∴27Q + 18 is also divided by 9	
	i e) When 9 $(3Q + 2) + 2$ is divided by 9, the remainder is 2.	1/2
17.		
	AC BA	1/
	$\overline{AD} = \overline{BD}$	/2
	$\frac{0.25}{1} = \frac{1}{1}$	
	AD 2.25	
	$AD = 0.25 \times 2.25$ $A \swarrow B$	1⁄2
1.0	· PA and PP are tangents to a circle with contro O	
10.	A = A = A = C = C = C = C = C = C = C =	
	$OA \perp AP, OB \perp PB$	
	$\angle APB = 110^\circ, \angle OAP = \angle OBP = 90^\circ$	
	$20AP + 2APB + 2PBO + 2BOA = 360^{\circ}$	
	$90^{\circ} + 110^{\circ} + 90^{\circ} + 2BOA = 360^{\circ}$	
	$\angle BOA = 360^{\circ} - 290^{\circ} = 70^{\circ}$	1/2
	$\therefore \ \angle POA = \ \angle POB$	
	$\angle POA = \frac{1}{2} \angle AOB$	
	$=\frac{1}{2}\times70^{\circ}$	
	$\angle POA = 35^{\circ}$	1/2
	(OR)	

	OA = 5 cm	
	OB = 13 cm	
	AB = ?	
	$OB^2 = OA^2 + AB^2$	1⁄2
	$(13)^2 - (5)^2 = AB^2$	
	$144 = AB^2$	
	AB = 12 cm	
	CB = 2 x 12	
	= 24 cm	1⁄2
19.	14, 21, 28	
	a = 14, d = 7, <i>l</i> = 98	
	$n = \frac{l-a}{d} + 1$	1⁄2
	$=$ $\frac{1}{7}$ + 1	
	$=\frac{84}{7}+1$	
	= 12 + 1	
	n = 13	1/2
20.	$ay^2 + ay + 3 = 0$; $y^2 + y + b = 0$	
	a + a + 3 = 0; $1 + 1 + b = 0$	1/2
	2a = -3; $b = -2$	
	$ab = \frac{-3}{2} \times -2$	
	ab = 3	1⁄2
	SECTION -B	
21.	Number of natural numbers between 102 and 998 which are divisible by 2	
	and 5 both are	
	110, 120, 130 990	1/2
	a = 110, d = 10, l = 990	
	$n = \frac{l-a}{d} + 1$	1/2
	$=\frac{990-110}{10}+1$	1/2
	$n = \frac{880}{10} + 1$, 2
	n=89	1/2
22.	A quadrilateral circumscribing a circle with centre 0, such that it touches side AB, BC, CD and DA at P, Q, R and S.	
	To prove:	
	AB + CD = BC + DA	
	Proof:	
	Length of tangent drawn from an external point are equal	

	AP = AS (1))
	BP = BQ (2)	
	DR = DS (3)	
	CR = CQ (4)	
	Adding eqn 1, 2, 3 and 4	
	AP + BP + DR + CR = AS + DS + BQ + CQ	
	AB + CD = BC + DA	1/2
	Hence proved.	1/2
23.	Given:	
	$\triangle ABC$, $\angle B=90^{\circ}$,D is the midpoints of BC	
	To prove:	
	$AC^2 = 4AD^2 - 3AB^2$	
	Proof	
	In ∆ABC, ∠ <i>B</i> =90°	
	$AC^2 = AB^2 + BC^2$	
	$= AB^{2} + (2BD)^{2}$	
	$= AB^2 + 4BD^2$ (1)	1/2
	In $\triangle ABD$,	
	$AD^2 = AB^2 + BD^2$	
	$BD^2 = AD^2 - AB^2 \qquad (2)$	1/2
	Sub (2) in (1),	
	$AC^2 = AB^2 + 4 (AD^2 - AB^2)$	1⁄2
	$= AB^2 + 4AD^2 - 4AB^2$	1/2
	$AC^2 = 4AD^2 - 3AB^2$	72
	Hence proved	
	(OR)	
	Given : AB CD	
	To prove :	
	AB = 2CD	
	Proof :	
	In $\triangle AOB$ and $\triangle COD$	
	$\angle AOB = \angle COD$ [VOA]	
	$\angle DCA = \angle CAB$ [Alt.Angle]	
	By AA Similarity,	
	$\triangle AOB \sim \triangle COD$	
	By theorem,	
	$\frac{\operatorname{ar}\Delta AOB}{\operatorname{ar}\Delta COD} = \frac{AB^2}{DC^2} = \frac{(2CD)^2}{CD^2} = \frac{4}{1}$	17
	Ratio = 4 : 1	1/2 1/2
24.	If right \triangle ABC, AC is the broken part of the tree	12
	Total height = AB+AC.	

	In rt \triangle ABC,						
	$\tan 30^\circ = \frac{AB}{R}$						
	$\frac{1}{1} AB$						
	$\overline{\sqrt{3}} = \overline{8}$						
	$\frac{8}{\sqrt{3}} = AB$	1/2					
	$\cos 30^{\circ} = \frac{BC}{AC}$						
	$\frac{\sqrt{3}}{\sqrt{3}} = \frac{8}{\sqrt{3}}$						
	2 AC	1/2					
	$AC = \frac{1}{\sqrt{3}}$						
	(i) Height of the tree = $AB + AC$						
	$= \frac{8}{\sqrt{3}} + \frac{16}{\sqrt{3}} = \frac{24}{\sqrt{3}} \times \frac{\sqrt{3}}{\sqrt{3}}$						
	$=\frac{24\sqrt{3}}{3}$	1⁄2					
	$= 8\sqrt{3} \text{ m.}$						
	ii) Height of the tree is broken $=\frac{8}{\sqrt{3}}$ m or $\frac{8\sqrt{3}}{3}$ m	1⁄2					
25	(i) Different hirthdays						
20.	365 - 1 = 364						
	P(Hamida's birthday is different from savita's birthday) = $\frac{364}{255}$	1					
	(ii) P (savitha and Hamida have the same birthday)						
	= 1 – P (Different birthday)						
	$= 1 - \frac{364}{365}$						
	365 1						
	$=\frac{1}{365}$	I					
	(OR)						
	n(s) = 52	1⁄2					
	P (Neither a red nor a queen) = $\frac{24}{52} = \frac{6}{13}$	1½					
26.	Туре А						
	Volume of glass= volume of cylinder – volume of hemisphere						
	$=\pi r^2 h - \frac{2}{3}\pi r^3$						
	$= 3.14 \times 4 \times 4 \times 15 - \frac{2}{3} \times 3.14 \times 4 \times 4 \times 4$						
	= 753.6 - 133.97 = 619.63	1/2					
	Туре В	/2					

$=\pi r^{2}h - \frac{1}{3}\pi r^{2}h$ $= 3.14 \times 4 \times 4 \times 15 - \frac{1}{3} \times 3.14 \times 4 \times 4 \times 0.5$ $= 753.6 - 8.37 = 745.23$ Loss Loss Loss Loss V125.6 ml V2 Case I = SECTION-C Z7. Let q be the quotient and r be the remainder when n is divided by 3 $p = 3q+r, 0 \le r < 3$ $p = 3q \text{ or } 3q+1 \text{ or } 3q + 2$ Case I : If p=3q, then n is divisible by 3 but n+2, n+4 are not divisible by 3 Case II : If p=3q+1 $p+2 = 3q+3 = 3(q+1) \text{ which is divisible by 3}$ Case III : If p = 3q+2 $p+2 = 3q+4$ $p+4 = 3q+6$ $= 3q (q+2) which is divisible by 3 for some integer p.$ (OR) let root 5 be rational then it must in the form of p/q [q is not equal to 0][p and q are co-prime] 1/2 $p = 7005 * q = p$
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $
$= 753.6 - 8.37 = 745.23$ Loss Loss by 125.6 ml $\begin{array}{c c c c c c c c c c c c c c c c c c c $
Loss $\frac{12}{14}$ $\frac{12}{14}$ SECTION-C27.Let q be the quotient and r be the remainder when n is divided by 3 $p = 3q+r, 0 \le r < 3$ $p = 3q$ or $3q+1$ or $3q+2$ 14 2 Case I: If p=3q, then n is divisible by 3 but n+2, n+4 are not divisible by 3Case II: If p=3q+1 $p+2 = 3q+3 = 3(q+1)$ which is divisible by 3 $p+4 = 3q+5$ Case III: If p = 3q+2 $p+2 = 3q+4$ $p+4 = 3q+6$ $= 3q (q+2)$ which is divisible by 3Hence, One and only one out of p, p+2, or p+4 is divisible by 3 for some integer p.(OR) let root 5 be rational then it must in the form of p/q [q is not equal to 0][p and q are co-prime] root 5=p/q $=>$ root 5 * q = p
Loss by 125.6 ml $\frac{72}{1/2}$ SECTION-C27.Let q be the quotient and r be the remainder when n is divided by 3 $p = 3q+r, 0 \le r < 3$ $p = 3q$ or $3q+1$ or $3q+2$ $27.$ Let q be the quotient and r be the remainder when n is divided by 3 $p = 3q$ or $3q+1$ or $3q+2$ $27.$ Let q be the quotient and r be the remainder when n is divided by 3 $p = 3q$ or $3q+1$ or $3q+2$ $27.$ Case II : If $p=3q+1$ or $3q+2$ $27.$ Case II : If $p=3q+1$ $p+2 = 3q+3 = 3(q+1)$ which is divisible by 3 $p+4 = 3q+5$ Case III : If $p = 3q+2$ $p+2 = 3q+4$ $p+4 = 3q+6$ $= 3q (q+2)$ which is divisible by 3Hence, One and only one out of p, p+2, or p+4 is divisible by 3 for some integer p.(OR) let root 5 be rational then it must in the form of p/q [q is not equal to 0][p and q are co-prime] root $5=p/q$ $=> root 5 * q = p$
SECTION-C27.Let q be the quotient and r be the remainder when n is divided by 3 $p = 3q + r, 0 \le r < 3$ $p = 3q$ or $3q + 1$ or $3q + 2$ ½Case I : If p=3q or $3q+1$ or $3q + 2$ ½Case I : If p=3q, then n is divisible by 3 but n+2, n+4 are not divisible by 3½Case II : If p=3q+1 $p+2 = 3q+3 = 3(q+1)$ which is divisible by 3 $p+4 = 3q+5$ ½Case III : If p = $3q+2$ $p+2 = 3q+4$ $p+4 = 3q+6$ $= 3q (q+2)$ which is divisible by 3½Hence, One and only one out of p, p+2, or p+4 is divisible by 3 for some integer p.½(OR) let root 5 be rational then it must in the form of p/q [q is not equal to 0][p and q are co-prime] $root 5=p/q$ $=> root 5 * q = p$ ½
27. Let q be the quotient and r be the remainder when n is divided by 3 $p = 3q + r, 0 \le r < 3$ $p = 3q \text{ or } 3q + 1 \text{ or } 3q + 2$ $\frac{12}{12}$ Case I : If p=3q, then n is divisible by 3 but n+2, n+4 are not divisible by 3 Case II : If p=3q+1 p+2 = 3q+3 = 3(q+1) which is divisible by 3 $p+4 = 3q+5$ Case III : If p = 3q+2 p+2 = 3q+4 $p+4 = 3q+6$ $= 3q (q+2) which is divisible by 3$ Hence, One and only one out of p, p+2, or p+4 is divisible by 3 for some integer p. (OR) let root 5 be rational then it must in the form of p/q [q is not equal to 0][p and q are co-prime] root 5=p/q $=> root 5 * q = p$ $\frac{12}{2}$
$p = 3q+r, 0 \le r < 3$ $p = 3q \text{ or } 3q+1 \text{ or } 3q + 2$ $p = 3q \text{ or } 3q+1 \text{ or } 3q + 2$ $p = 3q \text{ or } 3q+1 \text{ or } 3q + 2$ $p = 3q \text{ or } 3q+1 \text{ or } 3q + 2$ $p = 3q \text{ or } 3q+1 \text{ or } 3q + 2$ $p + 2 = 3q + 3 = 3(q+1) \text{ which is divisible by } 3$ $p + 4 = 3q + 5$ $Case III : If p = 3q + 2$ $p + 2 = 3q + 4$ $p + 4 = 3q + 6$ $= 3q (q+2) \text{ which is divisible by } 3$ Hence, $One \text{ and only one out of } p, p+2, \text{ or } p+4 \text{ is divisible by } 3 \text{ for some integer } p.$ (OR) $let root 5 be rational then it must in the form of p/q [q is not equal to 0][p and q are co-prime]$ $p = 3q (q - p)$ $p = 3q (q - p)$
p = 3q or 3q+1 or 3q+2 $L = 3q or 3q+1 or 3q+2$ $L = 3q or 3q+1 or 3q+2$ $L = 3q+3 = 3(q+1) which is divisible by 3$ $L = 3q+3 = 3(q+1) which is divisible by 3$ $L = 3q+4$ $p+4 = 3q+5$ $L = 3q+4$ $p+4 = 3q+6$ $= 3q (q+2) which is divisible by 3$ $L = 100 only one out of p, p+2, or p+4 is divisible by 3$ $L = 100 only one out of p, p+2, or p+4 is divisible by 3$ $L = 100 only one out of p, p+2, or p+4 is divisible by 3$ $L = 100 only one out of p, p+2, or p+4 is divisible by 3$ $L = 100 only one out of p, p+2, or p+4 is divisible by 3$ $L = 100 only one out of p, p+2, or p+4 is divisible by 3$ $L = 100 only one out of p, p+2, or p+4 is divisible by 3$ $L = 100 only one out of p, p+2, or p+4 is divisible by 3$ $L = 100 only one out of p, p+2, or p+4 is divisible by 3$ $L = 100 only one out of p, p+2, or p+4 is divisible by 3$ $L = 100 only one out of p, p+2, or p+4 is divisible by 3$ $L = 100 only one out of p, p+2, or p+4 is divisible by 3$ $L = 100 only q are co-prime$ $L = 100 only q$
Case I: If p=3q, then n is divisible by 3 but n+2, n+4 are not divisible by 3 Case II: If p=3q+1 p+2 = 3q+3 = 3(q+1) which is divisible by 3 p+4 = 3q+5 Case III: If p = 3q+2 p+2 = 3q+4 p+4 = 3q+6 = 3q (q+2) which is divisible by 3 Hence, One and only one out of p, p+2, or p+4 is divisible by 3 for some integer p. (OR) let root 5 be rational then it must in the form of p/q [q is not equal to 0][p and q are co-prime] root 5=p/q => root 5 * q = p
Case II : If $p=3q+1$ $p+2 = 3q+3 = 3(q+1)$ which is divisible by 3 $p+4 = 3q+5$ $1/2$ Case III : If $p = 3q+2$ $p+2 = 3q+4$ $p+4 = 3q+6$ $= 3q (q+2)$ which is divisible by 3 $1/2$ Hence, One and only one out of p, p+2, or p+4 is divisible by 3 for some integer p. $1/2$ (OR) let root 5 be rational then it must in the form of p/q [q is not equal to 0][p and q are co-prime] root 5=p/q $=> root 5 * q = p$ $1/2$
$p+2 = 3q+3 = 3(q+1) \text{ which is divisible by 3}$ $p+4 = 3q+5$ Case III : If $p = 3q+2$ $p+2 = 3q+4$ $p+4 = 3q+6$ $= 3q (q+2) \text{ which is divisible by 3}$ Hence, One and only one out of p, p+2, or p+4 is divisible by 3 for some integer p. I_2 (OR) let root 5 be rational then it must in the form of p/q [q is not equal to 0][p and q are co-prime] I_2 $root 5=p/q$ $=> root 5 * q = p$
p+4 = 3q+5 Case III : If p = 3q+2 p+2 = 3q+4 p+4 = 3q+6 = 3q (q+2) which is divisible by 3 Hence, One and only one out of p, p+2, or p+4 is divisible by 3 for some integer p. (OR) let root 5 be rational then it must in the form of p/q [q is not equal to 0][p and q are co-prime] root 5=p/q => root 5 * q = p $\frac{12}{2}$
Case III :If $p = 3q+2$ $p+2 = 3q+4$ $p+4 = 3q+6$ $= 3q (q+2)$ which is divisible by 31/2Hence, One and only one out of p, p+2, or p+4 is divisible by 3 for some integer p.1/2(OR)let root 5 be rational then it must in the form of p/q [q is not equal to 0][p and q are co-prime]1/21/2root 5 * q = p
Case III :If $p = 3q+2$ $p+2 = 3q+4$ $p+4 = 3q+6$ $= 3q (q+2)$ which is divisible by 31/2Hence, One and only one out of p, p+2, or p+4 is divisible by 3 for some integer p.1/2(OR) let root 5 be rational then it must in the form of p/q [q is not equal to 0][p and q are co-prime] $=> root 5 * q = p$ 1/2
p+2 = 3q+4 $p+4 = 3q+6$ $= 3q (q+2) which is divisible by 3$ Hence, One and only one out of p, p+2, or p+4 is divisible by 3 for some integer p. $\frac{P+2}{2} = 3q+4$ $\frac{1}{2}$ Hence, One and only one out of p, p+2, or p+4 is divisible by 3 for some integer p. $\frac{1}{2}$ $\frac{1}{2$
p+4 = 3q+6 $= 3q (q+2) which is divisible by 3$ Hence, One and only one out of p, p+2, or p+4 is divisible by 3 for some integer p. I_{2} (OR) let root 5 be rational then it must in the form of p/q [q is not equal to 0][p and q are co-prime] root 5=p/q I_{2} I_{2}
= 3q (q+2) which is divisible by 3 Hence, One and only one out of p, p+2, or p+4 is divisible by 3 for some integer p. (OR) let root 5 be rational then it must in the form of p/q [q is not equal to 0][p and q are co-prime] root 5=p/q => root 5 * q = p
Hence, One and only one out of p, p+2, or p+4 is divisible by 3 for some integer p. $1/_2$ (OR)(OR)let root 5 be rational then it must in the form of p/q [q is not equal to 0][p and q are co-prime] $1/_2$ root 5=p/q => root 5 * q = p $1/_2$
(OR) let root 5 be rational then it must in the form of p/q [q is not equal to 0][p and q are co-prime] $\frac{1}{2}$ root 5=p/q => root 5 * q = p
let root 5 be rationalthen it must in the form of p/q [q is not equal to 0][p and q are co-prime] $\frac{1}{2}$ root 5=p/q=> root 5 * q = p
then it must in the form of p/q [q is not equal to 0][p and q are co-prime] $\frac{1}{2}$ root 5=p/q $\frac{1}{2}$ => root 5 * q = p $\frac{1}{2}$
root 5=p/q => root 5 * q = p $\frac{1}{2}$
=> root 5 * q = p
squaring on both sides
$=>5^{*}q^{*}q = p^{*}p > 1$
p*p is divisible by 5
p is divisible by 5 1/2
p = 5c [c is a positive integer] [squaring on both sides]
p*p = 25c*c> 2
sub p*p in 1
$5^{*}q^{*}q = 25^{*}c^{*}c$
$q^{*}q = 5^{*}c^{*}c$

		=> q is divisble by 5	1/2					
		thus q and p have a common factor 5						
		there is a contradiction						
		as our assumsion p &g are co prime but it has a common factor						
		so $\sqrt{5}$ is an irrational						
	28.	$S_m = n, S_n = m.$						
		To prove :						
		$S_{m+n} = -(m+n)$						
		$S_{m} = \frac{m}{2} [2a+(m-1)d]$						
		n $=\frac{m}{2}$ [2a+(m-1)d](1)	1⁄2					
		$S_n = \frac{n}{2} [2a+(n-1)d]$						
		m = $\frac{n}{2}$ [2a+(n-1)d](2)	1/2					
		Subtract (2) from (1).						
		$\frac{m}{2}$ [2a+(m-1)d] - $\frac{n}{2}$ [2a+(n-1)d] = n-m	1/2					
		$\frac{2am}{2} + \frac{md}{2} (m-1) - \frac{2an}{2} - \frac{nd}{2} (n-1) = n-m$						
		$2a(\frac{m-n}{2})+\frac{d}{2}(m^2-m-n^2+n)=n-m$						
		$2a(\frac{m-n}{2}) + \frac{d}{2}[(m+n)(m-n) - (-n+m)] = n-m$						
		$2a(\frac{m-n}{2}) + \frac{d}{2}$ (m-n) [m+n-1) = n-m						
		$\frac{m-n}{2}$ [2a+(m+n-1)d] = -(m-n)						
		$\frac{1}{2}$ [2a+(m+n-1)d] = -1						
		- Multiply (m+n) on both sides						
		$\frac{m+n}{2}$ [2a+(m+n-1)d] = - (m+n)						
		$S_{m+n} = -(m+n)$	1/2					
		Hence proved						
	29.	2(ax - by) + (a + 4b) = 0						
		2(bx - ay) + (b - 4a) = 0						
		2ax - 2by = -a - 4b(1)	1/2					
		2bx + 2ay = 4a-b(2)						
		Multiply (1) by a and (2) by b						
		$2a^2x - 2aby = -a^2 - 4ab$						
		$2b^2x - 2aby = 4ab - b^2$						
		$2x(a^2 + b^2) = -(a^2 + b^2)$						
l		2x = -1						
		$X = \frac{-1}{2}$	1					
		substitute in (1)						
		substitute in (1)						

	$2a(\frac{-1}{2}) - 2by = -a - 4b$	
	- a - 2by = - a – 4b	
	-2by = -4b	
	y = 4	1
	BE II CD. BC II DE. BC ⊥CD	
	So, opposite sides are parallel & four right angles is a rectangle.	
	CD = BE = 7	
	x+y = 7(1)	1
	BC = DE = x-y(2)	
	Perimeter = 27	
	AB+BC+CD+DE+AE = 27	1/2
	5+x-y+7+x-y+5 = 27	, _
	17+2x-2y=27	
	2x - 2y = 10	1/2
	x - y = 5(3)	72
	Solving (1) & (3)	
	2x = 12	
	x = 6; y = 1.	1/2, 1/2
30.	Given polynomial is $x^4 + x^3 + 8x^2 + px + q$	
	Since $x + 1$ divides $x + x^2 + 8x + px + q$, so the quotient will be a polynomial of degree 2.	1/2
	So, we can write	/2
	$x^{4} + x^{3} + 8x^{2} + px + q = (x^{2} + 1) (a_{1}x^{2} + b_{1}x + c_{1})$ $\rightarrow x^{4} + x^{3} + 8x^{2} + px + q = a_{1}x^{4} + a_{2}x^{2} + b_{1}x^{3} + b_{1}x + c_{1}x^{2} + c_{1}$	
	$\Rightarrow x^{4} + x^{3} + 8x^{2} + px + q = a_{1}x^{4} + b_{1}x^{3} + (a_{1} + c_{1})x^{2} + b_{1}x + c_{1}$	
	Comparing the coefficient of x^4 on both sides, we get –	1/2
	$a_1 = 1$ On comparing the coefficient of x^3 , we get –	, _
	$b_1 = 1$	1/2
	On comparing the coefficient of x^2 , we get – at + $c_1 = 8$	
	$\Rightarrow 1 + c_1 = 8$	
	$\Rightarrow c_1 = 7$	1⁄2
	$p = b_1 = 1$	
	$\Rightarrow p = 1$	1/2
	On comparing the constants on both sides, we get – $a = c_1 = 7$	
	$\Rightarrow q = 7$	
	Hence, values of p and q are 1 and 7.	1/2
31.	(i) Ar $(\triangle ABC) = [x_1 (y_2-y_3) + x_2 (y_3-y_1) + x_3 (y_1-y_2)]$	1⁄2
	$= \frac{1}{2} \left[2 (3+1) + (-3)(-1-2) + (-2)(2-3) \right]$	
	$= \frac{1}{2} [2 (4) + (-3)(-3) + (-2)(-1)]$	

	$=\frac{1}{2}[8+9+2]$						
	$=\frac{19}{2}$ units	1⁄2					
	Ar (\triangle CDA) = $\frac{1}{2}$ [(-2)(-1-2)+(3)(2+1)+(2)(-1+1)]						
	$=\frac{1}{2}[(-2)(-3)+3(3)+0]$						
	$=\frac{1}{1}$ [6+9]						
	$\frac{15}{2}$ units	1/					
	$=\frac{1}{2}$ units	/2					
	(ii) Difference between them in Area						
	19 15	1/3					
	$=\frac{1}{2}-\frac{1}{2}$	12					
	$=\frac{4}{2}$						
	= 2 units.	1/					
32.	$\sin \theta = \frac{m}{2}$	/2					
	n By Pythagoras thm						
	$AC^2 = AB^2 + BC^2$						
	$AC^2 = AB^2 + BC^2$ $n^2 - m^2 + BC^2$						
	$n^2 - m^2 = BC^2$						
	$BC = \sqrt{m^2 - m^2}$	1/2					
	$\frac{1}{2} \sqrt{n^2 - m^2}$	/ _					
	$\tan\theta = \frac{m}{\sqrt{n^2 - m^2}}$; $\cot\theta = \frac{\sqrt{n^2 - m}}{m}$	1/2,1/2					
	$\tan \theta + 4$ m						
	$\frac{1}{4\cot\theta+1} = \frac{1}{\sqrt{n^2-m^2}} + 4$	1/2					
	$4 \frac{\sqrt{n^2 - m^2}}{m} + 1$						
	$=$ m+4 $\sqrt{n^2 - m^2} / \sqrt{n^2 - m^2}$	1/2					
	$\frac{1}{4\sqrt{n^2-m^2}+m/m}$						
	$=$ $\frac{1}{\sqrt{2}}$						
	$\sqrt{n^2-m^2}$						
	$\frac{1}{m}$						
	$=$ $\frac{m}{\sqrt{2}}$	1/2					
	$\sqrt{n^2-m^2}$ (OR)						
	$\cos^{2}(45^{\circ}+\theta) + \cos^{2}(45^{\circ}-\theta) + (\cos^{2}(9^{\circ}-\theta) + \cos^{2}(9^{\circ}-\theta)) + (\cos^{2}(9^{\circ}-\theta) + \cos^{2}(9^{\circ}-\theta))$						
	$= \frac{1}{\tan(60^\circ + \theta)\tan(30^\circ - \theta)} + (\cos(30^\circ + \sin(90^\circ)) \times (\sin(60^\circ - \sec(0^\circ)))$						
	$=\frac{\cos^{2}(45^{\circ}+\theta)+\cos^{2}\{90^{\circ}-(45^{\circ}-\theta)\}}{\tan\{90^{\circ}-(30^{\circ}-\theta)\}\tan(20^{\circ}-\theta)}+(\sqrt{3}+1)\times(\sqrt{3}-1)$	1, ½					
	= 1 + [3 - 1]	1					
	= 1 + 2						

	= 3	1/2
33.	Length of chord = 5 cm	
	Angle of sector = 90°	
	Let r be the radius	
	Then $OA = OB = r cm$	
	centre of sector OABO = 90°	
	AOB is a right angled triangle	
	by Py. Them	
	$AB^2 = OA^2 + OB^2$	
	$25 = 2r^2$	1/
	$r = \frac{5}{\sqrt{2}}$ cm	/2
	Also AOB is an isosceles triangle $OD \perp AB$	
	AD = DB = 2.5 cm	
	Let $AD = h cm$	
	In rt ∆AOD,	
	By py. thm	
	$AO^2 = AD^2 + OD^2$	
	$\left(\frac{5}{\sqrt{2}}\right)^2 = \left(\frac{5}{2}\right)^2 + h^2$	
	$h^2 = \left(\frac{5}{\sqrt{2}}\right)^2 - \left(\frac{5}{2}\right)^2$	
	$=\frac{25}{4}$	
	$h = \frac{5}{4}$	17
	$\frac{1}{2}$	1/2
	Area of isosceles thangle $AOB = \frac{1}{2} \times D \times R$	
	$=\frac{1}{2}\times5\times\frac{1}{2}$	
	$=\frac{25}{4}cm^2$	
	Area of minor sector $=\frac{1}{2}r^2\theta$	
	$=\frac{1}{2}\times\left(\frac{5}{\pi}\right)^2\cdot\frac{\pi}{2}$	
	$\frac{2}{\sqrt{2}} \sqrt{2}$	
	$\frac{1}{8}$ cm	
	isosceles triangle	
	$=\left(\frac{25\pi}{2}-\frac{25}{4}\right)cm^{2}$	
	x = 47 Area of major Segment = Area of the circle – Area of the minor	
	segment	1/2
	$=\pi^2 - \left(\frac{25\pi}{8} - \frac{25}{4}\right)$	
	$=\pi\left(\frac{5}{\sqrt{2}}\right)^2-\left(\frac{25\pi}{8}-\frac{25}{4}\right)$	
	$=\frac{25\pi}{2}-\frac{25\pi}{8}+\frac{25}{4}$	
	$= \left(\frac{75\pi}{8} + \frac{25}{4}\right) cm^2$	1/2

	∴ Difference of the areas of two segments of a circle = Area of major segment – Area of minor segment										
			$=\left(\frac{75}{8}\right)$	$\left(\frac{5\pi}{3} + \frac{25}{4}\right) - \left(\frac{25\pi}{8}\right)$	$\left(\frac{\pi}{4}-\frac{25}{4}\right)$		1⁄2				
			$=\left(\frac{2}{2}\right)$	$\left(\frac{5\pi}{4} + \frac{25}{2}\right) cm^2$			1⁄2				
34.	Mode:										
		Highest freque	ency = 23								
		Modal class =	35 – 45								
		$f_0 = 21, f_1 = 2$	$3, f_2 = 14, f_2$	l = 35, h = 10)						
	Mode: :	$= l + \left(\frac{f_1 - f_0}{2f_1 - f_0 - f_2}\right)$	$-) \times h$								
	:	$= 35 + \left(\frac{23-2}{2(23)-2}\right)$	$\left(\frac{21}{1-14}\right) \times 10$				1⁄2				
	:	$= 35 + \left(\frac{2}{46 - 35}\right)$	× 10								
		$= 35 + \frac{20}{11}$									
		11 = 35 + 1 81									
		= 36.81					1/2				
	Mean:										
		C. I	f	x	fx						
		5 – 15	6	10	60						
	15 – 25 11 20 220										
	25 – 35 21 30 630										
	35 - 45 23 40 920										
	45-55 14 50 700										
	55-65 5 60 300										
		$\Sigma f =$	80		2830						
		$Mean = \frac{\sum fx}{\sum f}$ $= \frac{2830}{2}$									
		= 35.37	75								
	Maximu	um number of	patients ac	dmitted in the	hospital are	e of the age	1/2				
	36.8 yrs (approx). While on an average the age of a patient admitted to the hospital is										
	35.37 years.										
	SECTION - D										
35.	Correct construction :										
	Triangles										
	Similar triangles										
	(UK) Correct construction:										
	Triangles										
	Triangles				Construction of tangents						
	Triangles Construction of	of tangents					1 1/2 21/2				

	i) Let $CD \parallel AB$, then $CD = p$							
	Area of $\triangle ABC = \frac{1}{2}(AB \times CD) = \frac{1}{2}CP$							
	also, Area of $\triangle ABC = \frac{1}{2}(BC \times AC) = \frac{1}{2}ab$							
	$\Rightarrow \frac{1}{2}CP = \frac{1}{2}ab$							
	$CP = ab \longrightarrow proved$							
	ii) since $\triangle ABC$ is a right angled \triangle at C	1/2						
	$AB^2 = AC^2 + BC^2$							
	$C^2 = a^2 + b^2$							
	$\left(\frac{ab}{p}\right)^2 = a^2 + b^2 \qquad \qquad [\because CP = ab \Rightarrow C = \frac{ab}{p}]$	1/						
	$\frac{a^2b^2}{2} = a^2 + b^2$	/2						
	$\frac{p^2}{n^2} = \frac{a^2 + b^2}{a^2 + b^2}$							
	$\frac{1}{1} = \frac{1}{1} + \frac{1}{1} - moved$							
	$p^2 = b^2 + a^2$ proved	1						
37.	Let the time taken by the larger tab to fill the tank = x hr.							
	\therefore Time taken by the smaller tap to fill the tank = $(x + 10)$ hr.	1/2						
	\therefore portion of the tank filled by larger tap in 1 hr = $\frac{1}{x}$							
	\therefore portion of the tank filled by the smaller tap in 1 hr = $\frac{1}{x+10}$							
	According to the Question, portion of the tank filled by both taps in 1 hr = $\frac{1}{\frac{75}{8}} = \frac{8}{75}$							
	$\Rightarrow \frac{1}{r} + \frac{1}{r+10} = \frac{8}{75}$							
	$4x^2 - 35x - 375 = 0$	1½						
	$x = 15 \ or \ -6\frac{1}{4}$	1 1/						
	\therefore Time taken by each to fill the tank separately are 15 hr & 15 + 10 =							
	25 hr. (OR)	1⁄2						
	$\frac{1}{x+1} + \frac{2}{x+2} = \frac{4}{x+4}, x \neq -1, -2, -4$							
	$\frac{x+2+2(x+1)}{(x+2)(x+1)} = \frac{4}{x+4}$							
	(x+2)(x+1) = x+4 (x+4)(3x+4) = 4(x ² + 3x + 2)	1						
	Solving, $x^2 - 4x - 8 = 0$							
	$x = \frac{4 \pm \sqrt{16 + 32}}{2} = \frac{4 \pm \sqrt{48}}{2}$	1						
	$=\frac{4\pm4\sqrt{3}}{2}$	1						
	$2 + r - 2 + 2\sqrt{3}$							
	$\frac{1}{2} = \frac{1}{2} = \frac{1}$	1						
38.	Given: AK= 4 cm, AD = 12cm $(ARO - (ADC - 90)^{\circ}$							
	$\angle A = \angle A$ (common)							
	$\Rightarrow \Delta ADC \sim \Delta AQR (by AA)$	1						
		I						

	$\frac{QR}{AR} = \frac{CD}{AD} \Longrightarrow \frac{QR}{4} = \frac{6}{12}$	
	QR = 2 cm.	
	Radius of bigger cone = $R = 6$ cm	
	Radius smaller cone = $r = 2$ cm	
	Height of the frestum = $RD = 12 - 4 = 8$ cm	
	Slant height of the frustum $l = \sqrt{(R-r)^2 + h^2}$	
	$l = \sqrt{(6-2)^2 + 8^2}$	1
	$=4\sqrt{5}$	
	=2 x 2.236	
	= 8.944 cm	1
	TSA of frustum = $\pi l(R + l) + \pi R^2 + \pi r^2$	
	= 224.877 + 125.714	1
	$= 350.591 \text{ cm}^2$	
	(OR)	1
	Volume of toy = Volume of hemisphere + Volume of cone	1/2
	$=\frac{2}{3}\pi r^{3} + \frac{1}{3}\pi r^{2}h$	
	$=\frac{2}{3} \times 3.14 \times 8 + \frac{1}{3} \times 3.14 \times 4 \times 2$	1/2
	$= (3.14 \times 8) \left(\frac{2}{3} + \frac{1}{3}\right) = 25.12 cm^3$	
	Volume of right circular cylinder = $\pi^2 h$	
	$= 3.14 \text{ x}2^2 \text{ x}4$	
	$= 50.24 \text{ cm}^3$	1
	Required volume = V. of cylinder - V. of toy	
	= 50.24 - 25.12	1/2
	$= 25.12 \text{ cm}^3$	1/2
	\therefore The difference of the volume of the cylinder a toy is 25.12 cm ³	
39.	In \triangle EDC, In \triangle ABE,	
	$\tan 30^\circ = \frac{ED}{CD} \qquad \qquad \tan 60^\circ = \frac{AB}{BE}$	
	$\frac{1}{\sqrt{3}} = \frac{14}{CD}$ $\sqrt{3} = \frac{AB}{24.248}$	
	$CD = 14\sqrt{3}$	
	CD = 24.248 41.998 = AB	
	\Rightarrow CD = BE = 24.258 m	1,1
	\therefore The distance of the cliff from the ship = 24.248 m	
	Height of the cliff = $AB + BC$	1
	= 41.998 + 14	1/2
	= 55.998 m	1/2
40.	Correct table	11/2
	Correct graph	1
	Median	11⁄2