Class: X

Q. No.	EXPECTED ANSWERS	Marks
SECTION - A		
1.	Option (d)	(1)
2.	Option (a)	(1)
3.	Option (b)	(1)
4.	Option (c)	(1)
5.	Option (a)	(1)
6.	Option (d)	(1)
7.	Option (c)	(1)
8.	Option (b)	(1)
9.	Option (a)	(1)
10.	Option (d)	(1)
11.	$2 \pi r h+\pi r l$ OR $\pi r(2 h+l)$	(1)
12.	$\begin{aligned} & \alpha+\beta=\frac{3}{k} \\ & \alpha \beta=\frac{2 k}{k}=2 \\ & \alpha+\beta=\alpha \beta \\ & \frac{3}{k}=2 \\ & k=\frac{3}{2} \\ & \text { (OR) } \end{aligned}$ No real roots	(1)

\begin{tabular}{|c|c|c|}
\hline 13. \& \(A B=15 \mathrm{~cm}\) \& (1) \\
\hline 14. \& \(\mathrm{n}=30\) \& (1) \\
\hline 15. \& \(\frac{3}{11}\) \& (1) \\
\hline 16. \& \begin{tabular}{l}
Let \(\theta\) be quotient by n is divided by 3 .
\[
\begin{aligned}
\& \text { Divident }=\text { Divisor } \times \text { Quotient }+ \text { Remainder } \\
\& \mathrm{n}=9 \times \mathrm{Q}+7 \\
\& \begin{aligned}
\& \mathrm{n}=9 \mathrm{Q}+7 \\
\& \text { Now } 3 \mathrm{n}-1 \\
\&=3(9 \mathrm{Q}+7)-1 \\
\&=27 \mathrm{Q}+21-1 \\
\& \quad=27 \mathrm{Q}+20 \\
\&=27 \mathrm{Q}+18+2
\end{aligned}
\end{aligned}
\] \\
When \(3 n-1\) is divided by 9 \\
\(\therefore 27 Q+18\) is also divided by 9 \\
i e) When \(9(3 Q+2)+2\) is divided by 9 , the remainder is 2 .
\end{tabular} \& \(1 / 2\)

1/2 \\

\hline 17. \& $$
\begin{aligned}
& \frac{A C}{A D}=\frac{B A}{B D} \\
& \frac{0.25}{A D}=\frac{1}{2.25} \\
& A D=0.25 \times 2.25 \\
&=5.625 \mathrm{~m} .
\end{aligned}
$$ \& $1 / 2$

$1 / 2$ \\

\hline 18. \& | $\therefore \mathrm{PA}$ and PB are tangents to a circle with centre O . $\begin{aligned} & O A \perp A P, O B \perp P B \\ & \angle A P B=110^{\circ}, \angle O A P=\angle O B P=90^{\circ} \end{aligned}$ |
| :--- |
| In quadrilateral OAPB, $\begin{aligned} & \angle O A P+\angle A P B+\angle P B O+\angle B O A=360^{\circ} \\ & 90^{\circ}+110^{\circ}+90^{\circ}+\angle B O A=360^{\circ} \\ & \quad \angle B O A=360^{\circ}-290^{\circ}=70^{\circ} \\ & \therefore \angle P O A=\angle P O B \\ & \quad \angle P O A=\frac{1}{2} \angle A O B \\ & \quad=\frac{1}{2} \times 70^{\circ} \\ & \angle P O A=35^{\circ} \end{aligned}$ |
| (OR) | \& $1 / 2$

$1 / 2$ \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|}
\hline \& $$
\begin{aligned}
& \mathrm{OA}=5 \mathrm{~cm} \\
& \mathrm{OB}=13 \mathrm{~cm} \\
& \mathrm{AB}=? \\
& \mathrm{OB}^{2}=\mathrm{OA}^{2}+\mathrm{AB}^{2} \\
& (13)^{2}-(5)^{2}=\mathrm{AB}^{2} \\
& 144=\mathrm{AB} \\
& \mathrm{AB}=12 \mathrm{~cm} \\
& \mathrm{CB}=2 \times 12 \\
& =24 \mathrm{~cm}
\end{aligned}
$$ \& $1 / 2$

$1 / 2$ \\

\hline 19. \& $$
\begin{aligned}
& 14,21,28 \ldots \ldots \ldots \ldots \ldots 98 \\
& \mathrm{a}=14, \mathrm{~d}=7, l=98 \\
& n=\frac{l-a}{d}+1 \\
&=\frac{98-14}{7}+1 \\
&=\frac{84}{7}+1 \\
&=12+1 \\
& \mathrm{n}=13
\end{aligned}
$$ \& $1 / 2$

$11 / 2$ \\

\hline 20. \& $$
\begin{array}{ll}
& a y^{2}+a y+3=0 ; y^{2}+y+b=0 \\
\mathrm{a}+\mathrm{a}+3=0 & ; 1+1+\mathrm{b}=0 \\
2 \mathrm{a}=-3 & ; \mathrm{b}=-2 \\
a b=\frac{-3}{2} \times-2 & \\
\mathrm{ab}=3 &
\end{array}
$$ \& $1 / 2$

$1 / 2$ \\
\hline \& SECTION -B \& \\
\hline 21. \& Number of natural numbers between 102 and 998 which are divisible by 2 and 5 both are

$$
\begin{aligned}
& 110,120,130 \ldots990 \\
& \mathrm{a}=110, \mathrm{~d}=10, \quad \mathrm{I}=990 \\
& n=\frac{l-a}{d}+1 \\
& =\frac{990-110}{10}+1 \\
& n=\frac{880}{10}+1 \\
& \mathrm{n}=89
\end{aligned}
$$ \& $1 / 2$

$1 / 2$
$1 / 2$
$1 / 2$
$1 / 2$ \\

\hline 22. \& | A quadrilateral circumscribing a circle with centre 0 , such that it touches side $A B, B C, C D$ and $D A$ at P, Q, R and S. |
| :--- |
| To prove: $A B+C D=B C+D A$ |
| Proof: |
| Length of tangent drawn from an external point are equal | \& \\

\hline
\end{tabular}

	$\begin{align*} & \mathrm{AP}=\mathrm{AS} \tag{1}\\ & \mathrm{BP}=\mathrm{BQ} \tag{2}\\ & \mathrm{DR}=\mathrm{DS} \tag{3}\\ & \mathrm{CR}=\mathrm{CQ} \tag{4} \end{align*}$ Adding eqn 1, 2, 3 and 4 $\begin{aligned} & A P+B P+D R+C R=A S+D S+B Q+C Q \\ & A B+C D=B C+D A \end{aligned}$ Hence proved.	$\} 1$ $1 / 2$ $1 / 2$	
23.	Given: $\triangle \mathrm{ABC}, \angle B=90^{\circ}, \mathrm{D}$ is the midpoints of BC To prove: $A C^{2}=4 A D^{2}-3 A B^{2}$ Proof $\begin{align*} & \text { In } \triangle \mathrm{ABC}, \angle B=90^{\circ} \\ & \begin{aligned} \mathrm{AC}^{2} & =A B^{2}+\mathrm{BC}^{2} \\ & =A B^{2}+(2 B D)^{2} \\ & =A B^{2}+4 B D^{2} \end{aligned} \end{align*}$ In $\triangle A B D$, Hence proved Given: $A B \\| C D$ To prove : $A B=2 C D$ Proof : In $\triangle \mathrm{AOB}$ and $\triangle \mathrm{COD}$ $\begin{aligned} & \angle A O B=\angle C O D[\mathrm{VOA}] \\ & \angle D C A=\angle C A B \quad[\text { Alt.Angle] } \end{aligned}$ By AA Similarity, $\triangle \mathrm{AOB} \sim \Delta \mathrm{COD}$ By theorem, $\begin{aligned} & \frac{\operatorname{ar} \triangle A O B}{\operatorname{ar} \triangle C O D}=\frac{A B^{2}}{D C^{2}}=\frac{(2 C D)^{2}}{C D^{2}}=\frac{4}{1} \\ & \text { Ratio }=4: 1 \end{aligned}$	$1 / 2$ $1 / 2$ $1 / 2$ $1 / 2$ $1 / 2$	
24.	If right $\triangle \mathrm{ABC}, \mathrm{AC}$ is the broken part of the tree Total height $=A B+A C$.		

\begin{tabular}{|c|c|c|}
\hline \& \begin{tabular}{l}
In rt \(\triangle \mathrm{ABC}\),
\[
\begin{array}{r}
\tan 30^{\circ}=\frac{A B}{B C} \\
\frac{1}{\sqrt{3}}=\frac{A B}{8} \\
\frac{8}{\sqrt{3}}=A B \\
\operatorname{Cos} 30^{\circ}=\frac{B C}{A C} \\
\frac{\sqrt{3}}{2}=\frac{8}{A C} \\
A C=\frac{16}{\sqrt{3}}
\end{array}
\] \\
(i) Height of the tree \(=A B+A C\)
\[
\begin{aligned}
\& =\frac{8}{\sqrt{3}}+\frac{16}{\sqrt{3}}=\frac{24}{\sqrt{3}} \times \frac{\sqrt{3}}{\sqrt{3}} \\
\& =\frac{24 \sqrt{3}}{3} \\
\& =8 \sqrt{3} \mathrm{~m} .
\end{aligned}
\] \\
ii) Height of the tree is broken \(=\frac{8}{\sqrt{3}} \mathrm{~m}\) or \(\frac{8 \sqrt{3}}{3} \mathrm{~m}\)
\end{tabular} \& \(1 / 2\)

$1 / 2$

$1 / 2$
$1 / 2$
$1 / 2$ \\

\hline 25. \& | (i) Different birthdays $365-1=364$ $P\left(\text { Hamida's birthday is different from savita's birthday) }=\frac{364}{365}\right.$ |
| :--- |
| (ii) P (savitha and Hamida have the same birthday) $\begin{aligned} & =1-P(\text { Different birthday }) \\ & =1-\frac{364}{365} \\ & =\frac{1}{365} \end{aligned}$ |
| (OR) $\begin{aligned} & n(s)=52 \\ & P(\text { Neither a red nor a queen })=\frac{24}{52}=\frac{6}{13} \end{aligned}$ | \& 1

1
1

$11 / 2$
$11 / 2$ \\

\hline 26. \& | Type A |
| :--- |
| Volume of glass= volume of cylinder - volume of hemisphere $\begin{aligned} & =\pi r^{2} h-\frac{2}{3} \pi r^{3} \\ & =3.14 \times 4 \times 4 \times 15-\frac{2}{3} \times 3.14 \times 4 \times 4 \times 4 \\ & =753.6-133.97=619.63 \end{aligned}$ |
| Type B | \& $1 / 2$ \\

\hline
\end{tabular}

\begin{tabular}{|c|c|c|}
\hline \& \begin{tabular}{l}
Volume of glass= volume of cylinder - volume of cone
\[
\begin{aligned}
\& =\pi r^{2} h-\frac{1}{3} \pi r^{2} h \\
\& =3.14 \times 4 \times 4 \times 15-\frac{1}{3} \times 3.14 \times 4 \times 4 \times 0.5 \\
\& =753.6-8.37=745.23
\end{aligned}
\] \\
Loss \\
Loss by 125.6 ml
\end{tabular} \& \(1 / 2\)
\(1 / 2\)
\(1 / 2\) \\
\hline \& SECTION-C \& \\
\hline 27. \& \begin{tabular}{l}
Let q be the quotient and r be the remainder when n is divided by 3
\[
\begin{aligned}
\& p=3 q+r, 0 \leq r<3 \\
\& p=3 q \text { or } 3 q+1 \text { or } 3 q+2
\end{aligned}
\] \\
Case I: If \(p=3 q\), then \(n\) is divisible by 3 but \(n+2, n+4\) are not divisible by 3 \\
Case II: If \(p=3 q+1\) \\
\(p+2=3 q+3=3(q+1)\) which is divisible by 3 \\
\(p+4=3 q+5\) \\
Case III :
\[
\begin{aligned}
\& \text { If } p=3 q+2 \\
\& p+2
\end{aligned}=3 q+4 .
\] \\
Hence, \\
One and only one out of \(\mathrm{p}, \mathrm{p}+2\), or \(\mathrm{p}+4\) is divisible by 3 for some integer p . \\
(OR) \\
let root 5 be rational \\
then it must in the form of \(p / q\) [\(q\) is not equal to 0\(][p\) and \(q\) are co-prime] root \(5=p / q\)
\[
\Rightarrow \operatorname{root} 5^{*} q=p
\] \\
squaring on both sides
\[
=5^{*} q^{*} q=p^{*} p \quad-\cdots-->1
\] \\
\(p^{*} p\) is divisible by 5 \\
\(p\) is divisible by 5 \\
\(p=5 c\) [\(c\) is a positive integer] [squaring on both sides]
\[
p^{*} p=25 c^{*} c-------->2
\] \\
sub \(p^{*} p\) in 1
\[
5^{*} q^{*} q=25^{*} c^{*} c
\]
\[
q^{*} q=5^{*} c^{*} c
\]
\end{tabular} \& \(1 / 2\)
\(1 / 2\)
\(1 / 2\)
\(1 / 2\)
\(1 / 2\)

$1 / 2$
$1 / 2$
$1 / 2$
$1 / 2$
$1 / 2$
$1 / 2$ \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|}
\hline \& => q is divisble by 5 thus q and p have a common factor 5 there is a contradiction as our assumsion p \&q are co prime but it has a common factor so $\sqrt{ } 5$ is an irrational \& $1 / 2$
$1 / 2$

$1 / 2$ \\

\hline 28. \& | $\mathrm{S}_{\mathrm{m}}=\mathrm{n}, \mathrm{S}_{\mathrm{n}}=\mathrm{m}$. |
| :--- |
| To prove : $\begin{array}{ll} \mathrm{S}_{\mathrm{m}+\mathrm{n}}= & -(\mathrm{m}+\mathrm{n}) \\ \mathrm{S}_{\mathrm{m}} & =\frac{m}{2}[2 \mathrm{a}+(\mathrm{m}-1) \mathrm{d}] \\ \mathrm{n} & =\frac{m}{2}[2 \mathrm{a}+(\mathrm{m}-1) \mathrm{d}] \\ \mathrm{S}_{\mathrm{n}} & =\frac{n}{2}[2 \mathrm{a}+(\mathrm{n}-1) \mathrm{d}] \\ \mathrm{m} & =\frac{n}{2}[2 \mathrm{a}+(\mathrm{n}-1) \mathrm{d}] \tag{2} \end{array}$ |
| Subtract (2) from (1). $\begin{aligned} & \frac{m}{2}[2 \mathrm{a}+(\mathrm{m}-1) \mathrm{d}]-\frac{n}{2}[2 \mathrm{a}+(\mathrm{n}-1) \mathrm{d}]=\mathrm{n}-\mathrm{m} \\ & \frac{2 a m}{2}+\frac{m d}{2}(\mathrm{~m}-1)-\frac{2 a n}{2}-\frac{n d}{2}(\mathrm{n}-1)=\mathrm{n}-\mathrm{m} \\ & 2 \mathrm{a}\left(\frac{m-n}{2}\right)+\frac{d}{2}\left(m^{2}-m-\mathrm{n}^{2}+\mathrm{n}\right)=\mathrm{n}-\mathrm{m} \\ & 2 \mathrm{a}\left(\frac{m-n}{2}\right)+\frac{d}{2}[(m+n)(m-n)-(-n+m)]=\mathrm{n}-\mathrm{m} \\ & 2 \mathrm{a}\left(\frac{m-n}{2}\right)+\frac{d}{2}(m-n)[m+n-1)=\mathrm{n}-\mathrm{m} \\ & \frac{m-n}{2}[2 \mathrm{a}+(m+n-1) d]=-(m-n) \\ & \frac{1}{2}[2 \mathrm{a}+(m+n-1) d]=-1 \end{aligned}$ |
| Multiply ($\mathrm{m}+\mathrm{n}$) on both sides $\begin{aligned} & \frac{m+n}{2}[2 a+(m+n-1) d]=-(m+n) \\ & S_{m+n}=-(m+n) \end{aligned}$ |
| Hence proved | \& 1/2 \\

\hline 29. \& | $\begin{align*} & 2(a x-b y)+(a+4 b)=0 \\ & 2(b x-a y)+(b-4 a)=0 \\ & 2 a x-2 b y=-a-4 b \tag{1}\\ & 2 b x+2 a y=4 a-b \tag{2} \end{align*}$ |
| :--- |
| Multiply (1) by a and (2) by b $\begin{aligned} 2 a^{2} x-2 a b y & =-a^{2}-4 a b \\ 2 b^{2} x-2 a b y & =4 a b-b^{2} \\ \hline 2 x\left(a^{2}+b^{2}\right) & =-\left(a^{2}+b^{2}\right) \\ 2 x & =-1 \\ x & =\frac{-1}{2} \end{aligned}$ |
| substitute in (1) | \& $1 / 2$

$1 / 2$

1 \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|}
\hline \& \begin{tabular}{l}
\[
\begin{aligned}
2 a\left(\frac{-1}{2}\right)-2 b y \& =-a-4 b \\
-a-2 b y \& =-a-4 b \\
-2 b y \& =-4 b \\
y \& =4
\end{aligned}
\] \\
(OR) \\
\(B E||C D, B C|| D E, B C \perp C D\) \\
So, opposite sides are parallel \& four right angles is a rectangle.
\[
\begin{gather*}
C D=B E=7 \\
x+y=7 \tag{1}\\
B C=D E=x-y \tag{2}\\
\text { Perimeter }=27 \\
A B+B C+C D+D E+A E=27 \\
5+x-y+7+x-y+5=27 \\
17+2 x-2 y=27 \\
2 x-2 y=10 \\
x-y=5 \tag{3}
\end{gather*}
\] \\
Solving (1) \& (3)
\[
\begin{aligned}
\& 2 x=12 \\
\& x=6 ; \quad y=1
\end{aligned}
\]
\end{tabular} \& \[
\begin{gathered}
1 \\
\\
\\
1 \\
1 \\
1 / 2 \\
1 / 2 \\
1 ½, 1 / 2
\end{gathered}
\] \\
\hline 30. \& \begin{tabular}{l}
Given polynomial is \(x^{4}+x^{3}+8 x^{2}+\mathrm{p} x+\mathrm{q}\) \\
Since \(x^{2}+1\) divides \(x^{4}+x^{3}+8 x^{2}+p x+q\), so the quotient will be a polynomial of degree 2. \\
So, we can write
\[
\begin{aligned}
\& x^{4}+x^{3}+8 x^{2}+p x+q=\left(x^{2}+1\right)\left(a_{1} x^{2}+b_{1} x+c_{1}\right) \\
\& \Rightarrow x^{4}+x^{3}+8 x^{2}+p x+q=a_{1} x^{4}+a_{1} x^{2}+b_{1} x^{3}+b_{1} x+c_{1} x^{2}+c_{1} \\
\& \Rightarrow x^{4}+x^{3}+8 x^{2}+p x+q=a_{1} x^{4}+b_{1} x^{3}+\left(a_{1}+c_{1}\right) x^{2}+b_{1} x+c_{1}
\end{aligned}
\] \\
Comparing the coefficient of \(x^{4}\) on both sides, we get -
\[
a_{1}=1
\] \\
On comparing the coefficient of \(x^{3}\), we get-
\[
b_{1}=1
\] \\
On comparing the coefficient of \(x^{2}\), we get -
\[
\begin{aligned}
\& \quad a_{1}+c_{1}=8 \\
\& \Rightarrow 1+c_{1}=8 \\
\& \Rightarrow c_{1}=7
\end{aligned}
\] \\
On comparing the coefficient of \(x\) on both sides, we get -
\[
\begin{gathered}
p=b_{1}=1 \\
\Rightarrow p=1
\end{gathered}
\] \\
On comparing the constants on both sides, we get -
\[
\begin{aligned}
\& q=c_{1}=7 \\
\& \Rightarrow q=7
\end{aligned}
\] \\
Hence, values of \(p\) and \(q\) are 1 and 7 .
\end{tabular} \& \(1 / 2\)

$1 / 2$
$1 / 2$
$1 / 2$

$1 / 2$
$1 / 2$
$1 / 2$
$1 / 2$ \\

\hline 31. \& $$
\text { (i) } \quad \begin{aligned}
\operatorname{Ar}(\triangle \mathrm{ABC})=\left[\mathrm{x}_{1}\right. & \left.\left(\mathrm{y}_{2}-\mathrm{y}_{3}\right)+\mathrm{x}_{2}\left(\mathrm{y}_{3}-\mathrm{y}_{1}\right)+\mathrm{x}_{3}\left(\mathrm{y}_{1}-\mathrm{y}_{2}\right)\right] \\
& =\frac{1}{2}[2(3+1)+(-3)(-1-2)+(-2)(2-3)] \\
& =\frac{1}{2}[2(4)+(-3)(-3)+(-2)(-1)]
\end{aligned}
$$ \& 1/2 \\

\hline
\end{tabular}

	$\begin{aligned} & =\frac{1}{2}[8+9+2] \\ & =\frac{19}{2} \text { units } \\ \operatorname{Ar}(\triangle C D A) & =\frac{1}{2}[(-2)(-1-2)+(3)(2+1)+(2)(-1+1)] \\ & =\frac{1}{2}[(-2)(-3)+3(3)+0] \\ & =\frac{1}{2}[6+9] \\ & =\frac{15}{2} \text { units } \end{aligned}$ Group X covered more Area (ii) Difference between them in Area $\begin{aligned} & =\frac{19}{2}-\frac{15}{2} \\ & =\frac{4}{2} \\ & =2 \text { units. } \end{aligned}$	1/2
32.	$\sin \theta=\frac{m}{n}$ By Pythagoras thm, $\begin{aligned} & \mathrm{AC}^{2}=A B^{2}+\mathrm{BC}^{2} \\ & \mathrm{n}^{2}=\mathrm{m}^{2}+\mathrm{BC}^{2} \\ & \mathrm{n}^{2}-\mathrm{m}^{2}=\mathrm{BC}^{2} \\ & \mathrm{BC}=\sqrt{n^{2}-m^{2}} \end{aligned}$ $\tan \theta=\frac{m}{\sqrt{n^{2}-m^{2}}} ; \cot \theta=\frac{\sqrt{n^{2}-m^{2}}}{m}$ $\frac{\tan \theta+4}{4 \cot \theta+1}=\frac{\frac{m}{\sqrt{n^{2}-m^{2}}}+4}{4 \frac{\sqrt{n^{2}-m^{2}}}{m}+1}$ $=\frac{m+4 \sqrt{n^{2}-m^{2}} / \sqrt{n^{2}-m^{2}}}{4 \sqrt{n^{2}-m^{2}}+\mathrm{m} / \mathrm{m}}$ $=\frac{\frac{1}{\sqrt{n^{2}-m^{2}}}}{\frac{1}{m}}$ $=\quad \frac{m}{\sqrt{n^{2}-m^{2}}}$ (OR) $\begin{aligned} & =\frac{\cos ^{2}\left(45^{\circ}+\theta\right)+\cos ^{2}\left(45^{\circ}-\theta\right)}{\tan \left(60^{\circ}+\theta\right) \tan \left(\sqrt{\circ} 30^{\circ}-\theta\right)}+\left(\cot 30^{\circ}+\sin 90^{\circ}\right) \times\left(\tan 60^{\circ}-\sec 0^{\circ}\right) \\ & \quad=\frac{\cos ^{2}\left(45^{\circ}+\theta\right)+\cos ^{2}\left\{90^{\circ}-\left(45^{\circ}-\theta\right)\right\}}{\tan \left\{90^{\circ}-\left(30^{\circ}-\theta\right)\right\} \tan \left(30^{\circ}-\theta\right)}+(\sqrt{3}+1) \times(\sqrt{3}-1) \\ & \quad=1+[3-1] \\ & \quad=1+2 \end{aligned}$	$1 / 2,1 / 2$ $1 / 2$ $1 / 2$ $1 / 2$ $1,1 / 2$

\begin{tabular}{|c|c|c|}
\hline \& \begin{tabular}{l}
i) Let \(C D \| A B\), then \(\mathrm{CD}=\mathrm{p}\)
\[
\text { Area of } \triangle \mathrm{ABC}=\frac{1}{2}(A B \times C D)=\frac{1}{2} C P
\] \\
also, Area of \(\triangle \mathrm{ABC}=\frac{1}{2}(B C \times A C)=\frac{1}{2} a b\)
\[
\begin{aligned}
\& \Rightarrow \frac{1}{2} C P=\frac{1}{2} a b \\
\& \quad \mathrm{CP}=\mathrm{ab} \longrightarrow \text { proved }
\end{aligned}
\] \\
ii) since \(\triangle \mathrm{ABC}\) is a right angled \(\triangle\) at C
\[
\begin{aligned}
\& A B^{2}=A C^{2}+B C^{2} \\
\& C^{2}=a^{2}+b^{2} \\
\& \left(\frac{a b}{p}\right)^{2}=a^{2}+b^{2} \\
\& \frac{a^{2} b^{2}}{p^{2}}=a^{2}+b^{2} \\
\& \frac{1}{p^{2}}=\frac{a^{2}+b^{2}}{a^{2} b^{2}} \\
\& \frac{1}{p^{2}}=\frac{1}{b^{2}}+\frac{1}{a^{2}}-\text { proved }
\end{aligned}
\]
\end{tabular} \& \(1 / 2\)
1
1
\(1 / 2\)

$1 / 2$
$1 / 2$ \\

\hline 37. \& | Let the time taken by the larger tab to fill the tank $=x \mathrm{hr}$. |
| :--- |
| \therefore Time taken by the smaller tap to fill the tank $=(x+10) \mathrm{hr}$. |
| \therefore portion of the tank filled by larger tap in $1 \mathrm{hr}=\frac{1}{x}$ |
| \therefore portion of the tank filled by the smaller tap in $1 \mathrm{hr}=\frac{1}{x+10}$ |
| According to the Question, portion of the tank filled by both taps in 1 hr $\begin{aligned} =\frac{1}{\frac{75}{8}}=\frac{8}{75} & \\ & \Rightarrow \quad \frac{1}{x}+\frac{1}{x+10}=\frac{8}{75} \\ & \\ & \\ & \\ & \\ & x=15 \text { or }-6 \frac{1}{4} \end{aligned}$ |
| \therefore Time taken by each to fill the tank separately are $15 \mathrm{hr} \& 15+10=$ 25 hr. |
| (OR) $\begin{aligned} & \frac{1}{x+1}+\frac{2}{x+2}=\frac{4}{x+4}, x \neq-1,-2,-4 \\ & \frac{x+2+2(x+1)}{(x+2)(x+1)}=\frac{4}{x+4} \\ & (x+4)(3 x+4)=4\left(x^{2}+3 x+2\right) \end{aligned}$ |
| Solving, $x^{2}-4 x-8=0$ $\begin{aligned} & x=\frac{4 \pm \sqrt{16+32}}{2}=\frac{4 \pm \sqrt{48}}{2} \\ & =\frac{4 \pm 4 \sqrt{3}}{2} \\ & \therefore x=2 \pm 2 \sqrt{3} \end{aligned}$ | \& 1/2 \\

\hline 38. \& $$
\begin{aligned}
& \text { Given: } \mathrm{AR}=4 \mathrm{~cm}, \mathrm{AD}=12 \mathrm{~cm} \\
& \angle A R Q=\angle A D C=90^{\circ} \\
& \angle A=\angle A \text { (common) } \\
& \Rightarrow \triangle \mathrm{ADC} \sim \triangle \mathrm{AQR} \text { (by AA) }
\end{aligned}
$$ \& 1 \\

\hline
\end{tabular}

	$\begin{aligned} & \frac{Q R}{A R}=\frac{C D}{A D} \Rightarrow \frac{Q R}{4}=\frac{6}{12} \\ & Q R=2 \mathrm{~cm} . \end{aligned}$ Radius of bigger cone $=\mathrm{R}=6 \mathrm{~cm}$ Radius smaller cone $=r=2 \mathrm{~cm}$ Height of the frestum $=R D=12-4=8 \mathrm{~cm}$ Slant height of the frustum $l=\sqrt{(R-r)^{2}+h^{2}}$ $l=\sqrt{(6-2)^{2}+8^{2}}$ $=4 \sqrt{5}$ $=2 \times 2.236$ $=8.944 \mathrm{~cm}$ $\begin{aligned} \text { TSA of frustum } & =\pi l(R+l)+\pi R^{2}+\pi r^{2} \\ & =224.877+125.714 \\ & =350.591 \mathrm{~cm}^{2} \end{aligned}$ (OR) Volume of toy $=$ Volume of hemisphere + Volume of cone $\begin{aligned} & =\frac{2}{3} \pi r^{3}+\frac{1}{3} \pi r^{2} h \\ & =\frac{2}{3} \times 3.14 \times 8+\frac{1}{3} \times 3.14 \times 4 \times 2 \\ & =(3.14 \times 8)\left(\frac{2}{3}+\frac{1}{3}\right)=25.12 \mathrm{~cm}^{3} \end{aligned}$ Volume of right circular cylinder $=\pi^{2} h$ $\begin{aligned} & =3.14 \times 2^{2} \times 4 \\ & =50.24 \mathrm{~cm}^{3} \end{aligned}$ $\begin{aligned} \text { Required volume } & =\mathrm{V} . \text { of cylinder }-\mathrm{V} . \text { of toy } \\ & =50.24-25.12 \\ & =25.12 \mathrm{~cm}^{3} \end{aligned}$ \therefore The difference of the volume of the cylinder a toy is $25.12 \mathrm{~cm}^{3}$	1 1 1 1
39.	$\ln \triangle$ EDC, In $\triangle \mathrm{ABE}$, $\begin{aligned} & \tan 30^{\circ}=\frac{E D}{C D} \\ & \frac{1}{\sqrt{3}}=\frac{14}{C D} \\ & C D=14 \sqrt{3} \\ & C D=24.248 \\ & \Rightarrow C D=B E=24.258 \mathrm{~m} \end{aligned}$ $\tan 60^{\circ}=\frac{A B}{B E}$ $41.998=\mathrm{AB}$ \therefore The distance of the cliff from the ship $=24.248 \mathrm{~m}$ $\begin{aligned} \text { Height of the cliff } & =A B+B C \\ & =41.998+14 \\ & =55.998 \mathrm{~m} \end{aligned}$	1,1 1 $1 / 2$ $1 / 2$
40.	Correct table Correct graph Median	$11 / 2$ 1 $11 / 2$

