Solution Class 10 - Mathematics Sample Paper 3

Section A

1. (c)

 $0\leqslant r\,<\,3$

Explanation:

Since a is a positive integer, therefore, r = 0, 1, 2 only. So, that a = 3q, 3q + 1, 3q + 2.

2. (b)

6

Explanation:

Let n be a positive integer,

then three consecutive positive integers are $(n+1)\,(n+2)\,(n+3)$ =

$$n\left(n+1
ight) \left(n+2
ight) +3\left(n+1
ight) \left(n+2
ight)$$

Here, the first term is divisible by 6 and the second term is also divisible by 6 Because it contains a factor 3 and one of the two consecutive integers (n + 1) or (n + 2) is even and thus is divisible by 2

Therefore, the sum of multiple of 6 is also a multiple of 6.

3. (c) $\frac{x_i-a}{h}$

Explanation:

In the formula, $\overline{x} = a + h\left(\frac{\sum f_i u_i}{\sum f_i}\right)$ for finding the mean, $u_i = \frac{x_i - a}{h}$. where xi = mid values of class intervals a = assumed mean values x_i - a = deviation of each mid - value from the assumed mean value h = class size

4. (a)

2p + q, 2p - q

Explanation:
Given:
$$x^2 - 4px + 4p^2 - q^2 = 0$$

 $\Rightarrow (x - 2p)^2 - q^2 = 0$
Using $a^2 - b^2 = (a+b)$ (a-b),
 $\Rightarrow (x - 2p + q) (x - 2p - q) = 0$
 $\Rightarrow x - 2p + q = 0$ and $x - 2p - q = 0$
 $\Rightarrow x = 2p - q$ and $x = 2p + q$

5. (a)

 60°

Explanation:

Let the height of the pole AB = $\sqrt{3}x$ meters and length of the string AC = 2x meters. An angle of elevation be heta

$$\therefore \sin \theta = \frac{AB}{AC} \\ \Rightarrow \sin \theta = \frac{\sqrt{3}x}{\frac{2x}{2}} \\ \Rightarrow \sin \theta = \frac{\sqrt{3}}{2} \\ \Rightarrow \sin \theta = \sin 60^{\circ} \\ \Rightarrow \theta = 60^{\circ}$$

6. (b)

 $\cos^2 \theta$

Explanation:

Given: $\frac{\cos\theta\cos(90^\circ-\theta)}{1-1}$ $= \frac{\cos\theta\sin\theta}{\sin\theta}$ $=\frac{\tan\theta}{\cos\theta\sin\theta}\times\cos\theta$ $\sin \theta$ $=\cos^2\theta$

Explanation: Given: $\cot A + \frac{1}{\cot A} = 2$ Squaring both sides, we get $\Rightarrow \cot^2 A + rac{1}{\cot^2 A} + 2 imes \cot A imes rac{1}{\cot A} = 4$ $\Rightarrow \cot^2 A + rac{1}{\cot^2 A} = 2$ (c)

 $\frac{1}{2}$

8.

Explanation: Number of possible outcomes = $\{2, 3, 5\} = 3$ Number of Total outcomes = 6 \therefore Probability of getting a prime number = $rac{3}{6}=rac{1}{2}$

9. (b)

1

Explanation: Let A(a, 0), B(0, b) and C (1, 1). Since points A, B and C are collinear, then $\mathrm{ar}\left(\Delta\mathrm{ABC}
ight)=0$ $\Rightarrow \frac{1}{2}|a(b-1)+0(1-0)+1(0-b)|=0$ $\Rightarrow |ab - a - b| = 0$ $\Rightarrow ab - a - b = 0 \Rightarrow a + b = ab$ $\Rightarrow \frac{1}{a} + \frac{1}{b} = 1$ (b)

10. 4 Explanation:

Let the coordinates of midpoint O(5,p) is equidistance from the points A(3p,4) and B(-2,4). (because O is the mid-point of AB)

$$\therefore 5 = \frac{3p-2}{2} \Rightarrow 3p-2 = 10$$

$$\Rightarrow 3p = 12 \Rightarrow p = 4$$

Also $p = \frac{4+4}{2} \Rightarrow p = 4$
11. $\frac{4}{3}\pi(R^3 - r^3)$
12. $a = 2$
OR
3
13. 1
14. $a_n = S_n - S_{n-1}$
15. circumference
16. $\frac{619}{325} = \frac{619}{5^2 \times 13}$
Here, the denominator is $5^2 \times 13$ is not of the form $2^m \times 5^n$, where m and n are non-negative integers.
Hence, $\frac{619}{325}$ will have a non-terminating repeating decimal expansion.

Construction: Join AC and BC Now, $AC \perp AP$ and $CB \perp BP$ $\angle APB = 90^{0}$ Therefore, CAPB will be a square CA = AP = PB = BC = 4 cm \therefore Length of tangent = 4 cm.

18.
Now, In
$$rt. \triangle OCA$$

 $AO^2 = OC^2 + AC^2$
 $\Rightarrow AC^2 = 5^2 - 3^2$
 $\Rightarrow AC = 4$
We know, $OC \perp AB$
 $\therefore AC = BC$
Hence, $AC = 2(4) = 8cm$
19. Given $AP = \frac{3}{2}, \frac{1}{2}, \frac{-1}{2}, \frac{-3}{2}...$
 1^{st} term $= \frac{3}{2}$
Common difference $= \frac{1}{2} - \frac{3}{2} = -1$
0.6, 1.7, 2.8, 3.9...
First term $= a = 0.6$
Common difference (d) = Second term -First term
 $=$ Third term - Second term and so on
Therefore, Common difference (d) = 1.7-0.6=1.1
20. Here $a = k, b = 4, c = 1$
 $D = b^2 - 4ac$

OR

 $= 4^{2} - 4 \times k \times 1$ = 16 - 4k. For equal roots, D = 0 \Rightarrow 16 - 4k = 0 \Rightarrow k = 4.

Section **B**

21. Given $\angle BOC = 45^{\circ}$ $\angle AOC = 180^{\circ} - 45^{\circ} = 135^{\circ}$ Area of circle = πr^2 Area of region X = $\frac{\theta}{360^{\circ}}\pi r^2$ $=rac{135^\circ}{360^\circ}\pi r^2$ $=\frac{3}{8}\pi r^2$ \therefore Probability that the spinner will land in the region $X = \frac{Area \text{ of region } x}{Area \text{ of circle}} = \frac{\frac{3}{8}\pi r^2}{\pi r^2} = \frac{3}{8}$. 22. We know that the radius and tangent are perpendicular at their point of contact $\therefore \angle OBP = \angle OAP = 90^{\circ}$ Now, In guadrilateral AOBP $\angle APB + \angle AOB + \angle OBP + \angle OAP = 360^{\circ}$ $\Rightarrow \angle APB + \angle AOB + 90^{\circ} + 90^{\circ} = 360^{\circ}$ $\Rightarrow \angle APB + \angle AOB = 180^{\circ}$ Since, the sum of the opposite angles of the quadrilateral is 180° Hence, AOBP is a cyclic quadrilateral. 23. In \triangle PQR, CA || PR $\therefore \frac{PC}{CQ} = \frac{RA}{AQ} \text{ (By BPT)}$ or, $\frac{PC}{15} = \frac{20}{12}$:. $PC = \frac{15 \times 20}{12} = 25 \text{ cm}$ In \triangle PQR, CB || QR $\therefore \frac{PC}{CQ} = \frac{PB}{BR}$ (By BPT) or, $\frac{25}{15} = \frac{15}{BR}$ $\therefore BR = \frac{15 \times 15}{25} = 9$ cm. OR In $\triangle ABC$, $AB \parallel DE$. $\therefore \quad \frac{CD}{DA} = \frac{CE}{EB}$...(i) [by Thales' theorem] In $\triangle CDB$, $BD \parallel EF$ $\therefore \quad \frac{CF}{FD} = \frac{CE}{EB}$...(ii) [by Thales' theorem] From (i) and (ii) we get From (i) and (i) we set $\frac{CD}{DA} = \frac{CF}{FD}$ $\Rightarrow \frac{DA}{DC} = \frac{FD}{CF} \text{ [taking reciprocals]}$ $\Rightarrow \frac{DA}{DC} + 1 = \frac{FD}{CF} + 1$ $\Rightarrow \frac{DA+DC}{DC} = \frac{FD+CF}{CF}$ $\Rightarrow \frac{AC}{DC} = \frac{DC}{CF}$ $\rightarrow DC^{2} = CF \times AC$ $DC^2 = CF \times AC$ \Rightarrow 24. Let a man is standing on the deck of a ship at point A such hat AB = 10 cm and let CD be the hill. Then, $\angle EAD = 60^{\circ}$

and $\angle CAE = \angle BCA = 30^{o}$ [alternate angles] Let BC = x cm = AE and DE= h m

In right-angled riangle ABC, $\tan 30^o = \frac{P}{B} = \frac{AB}{BC} = \frac{1}{\sqrt{3}}$ $\Rightarrow \frac{1}{\sqrt{3}} = \frac{10}{x}$ \Rightarrow x = 10 $\sqrt{3}$ In right-angled $\triangle AED$, $\tan 60^{\circ} = \frac{P}{B} = \frac{DE}{EA} = \frac{h}{x}$ $\Rightarrow \sqrt{3} = \frac{h}{10\sqrt{3}}$ $\Rightarrow h = 10 imes 3$ $\Rightarrow h = 30 \mathrm{m}$ Height of Hill = 10 + 30 = 40 cm Distance of the hill from the ship is $10\sqrt{3}$ m and height of the hill is 40 m. 25. We have, $a(x^2 + 1) - x(a^2 + 1) = 0$ \Rightarrow ax² + a - xa² - x = 0 \Rightarrow ax² - xa² + a - x = 0 \Rightarrow ax(x - a) - 1(x - a) = 0 \Rightarrow (x - a)(ax - 1) = 0 \Rightarrow either x - a = 0 or, ax - 1 = 0 \Rightarrow x = a or $x = \frac{1}{a}$ Hence, the roots of given quadratic equation are a and $\frac{1}{a}$ OR

Let the total number of camels be x

According to the question, $\frac{x}{4} + 2\sqrt{x} + 15 = x$ or, $3x - 8\sqrt{x} - 60 = 0$ let $\sqrt{x} = y$, then $3y^2 - 8y - 60 = 0$ or, $3y^2 - 18y + 10y - 60 = 0$ or, 3y(y - 6) + 10(y - 6) = 0or, (3y + 10)(y - 6) = 0or, y = 6 or $y = -\frac{10}{3}$ (not possible) So, y = 6 or, $y^2 = 36$ $x = y^2 = 36$

Hence the number of camels = 36.

26. We have, Inner diameter of the glass, d = 5 cm, Height of the glass = 10 cm

i. The apparent capacity of the glass = Volume of cylinder

$$=\pi r^2 h \ = 3.14 imes \left(rac{5}{2}
ight)^2 imes 10 \ = 3.14 imes rac{25}{4} imes 10 = 196.25 ext{ cm}^3$$

ii. The actual capacity of glass = Apparent capacity of glass - Volume of hemispherical part of the glass The volume of hemispherical part = $\frac{2}{3}\pi r^2 h = \frac{2}{3} \times 3.14 \times \left(\frac{5}{2}\right)^3 = 32.71 \text{ cm}^3$

Section C

27. Let $\frac{1}{2+\sqrt{3}}$ be a rational number.

A rational number can be written in the form of $\frac{p}{q}$ where p,q are integers.

$$\frac{1}{2+\sqrt{3}} = \frac{p}{q}$$
$$\Rightarrow \sqrt{3} = \frac{q-2p}{n}$$

p, q are integers then $\frac{q-2p}{p}$ is a rational number.

Then $\sqrt{3}$ is also a rational number.

But this contradicts the fact as $\sqrt{3}$ is an irrational number.

So, our supposition is false.

Therefore, $\frac{1}{2+\sqrt{3}}$ is an irrational number.

OR

(1). Let us consider: rational × irrational

Let R be any rational number

Case I : R=0 then $R=0=rac{0}{5}=rac{0}{100}=rac{0}{-25}$ (So 0 is a rational number) $0 \times \sqrt{2} = 0$ Rational ×irrational=rational Case II If $R \neq 0$ then for example.

$$3 imes \sqrt{2} = \sqrt{2} + \sqrt{2} + \sqrt{2}$$
 (irrational)
 $\frac{2}{3} imes \sqrt{3} = \frac{\sqrt{3} + \sqrt{3}}{3}$ (irrational)
 $\frac{15}{13} imes \sqrt{13}$ irrational

Hence the product of a rational number and an irrational number can be a rational number or an irrational number.

(2) Irrational x Irrational

The product of two irrational numbers, in some cases, will be irrational. However, it is possible that product of two irrational numbers may be rational.

For example

$$egin{aligned} \sqrt{5} imes\sqrt{5}&=5 (ext{ rational})\ \sqrt{3} imes\sqrt{2}&=\sqrt{6}\ (irrational)\ \sqrt{2} imes\sqrt{2}&=2\ (ext{rational})\ \sqrt{5} imes\sqrt{2}&=\sqrt{10}\ (ext{irrational}) \end{aligned}$$

28. Let A (1, -2) and B (-3,4) be the given points.

Let the points of trisection be P and Q. Then, AP = PQ = QB = X(say)

λ

PB = PQ + QB = 2λ and AQ = AP + PQ = 2λ

$$\Rightarrow$$
 AP : PB = λ : 2 λ = 1 : 2 and AQ : QB = 2 λ : λ = 2 : 1

So, P divides AB internally in the ratio 1: 2 while Q divides internally in the ratio 2: 1. Thus, the coordinates of P and Q are

$$P\left(\frac{1\times-3+2\times1}{1+2},\frac{1\times4+2\times-2}{1+2}\right) = P\left(\frac{-1}{3},0\right)$$
$$Q\left(\frac{2\times-3+1\times1}{2+1},\frac{2\times4+1\times(-2)}{2+1}\right) = Q\left(\frac{-5}{3},2\right)$$

Hence, the two points of trisection are (-1/3, 0) and (-5/3, 2)

29. Let father's age be x years and the sum of the ages of his two children be y years.

Then,

$$x = 2y$$

 $\Rightarrow x - 2y = 0$ (i)
20 years hence,

Father's age = (x + 20)yearsSum of the ages of two children = y + 20 + 20 = (y + 40)yearsThen, we have x + 20 = y + 40 $\Rightarrow x - y = 20....(ii)$ Multiplying (ii) by 2, we get 2x - 2y = 40 ...(iii) Subtracting (i) from (iii), we have x = 40Thus, the age of father is 40 years.

OR

According to question the given system of equations are $\frac{\frac{x}{10} + \frac{y}{5} - 1 = 0}{\Rightarrow \frac{x + 2y - 10}{10} = 0}$ \Rightarrow x + 2y = 10(i) And, $\frac{x}{8} + \frac{y}{6} = 15$ $\Rightarrow \frac{3x+4y}{24} = 15$ \Rightarrow 3x + 4y = 360(ii) Multiplying equation (i) by 3, we get 3x + 6y = 30(iii) Subtracting equation (iii) from (ii), we get 3x + 4y - 3x - 6y = 360 - 30-2y = 330 \Rightarrow y = -165 Substitute the value of y = -165 in (i), we get x + 2(-165) = 10 \Rightarrow x - 330 = 10 \Rightarrow x = 340 Now it is given that $y = \lambda x + 5$ $\Rightarrow -165 = \lambda imes 340 + 5$ $\Rightarrow 340\lambda = -170$ $\Rightarrow \lambda = rac{-170}{340} = -rac{1}{2}$ Hence, x = 340, y = -165 and $\lambda = -\frac{1}{2}$. 30. Let $p(x) = x^2 - 2x - (7p + 3)$ Since -1 is a zero of p(x). Therefore, p(-1) = 0 $(-1)^2 - 2(-1) - (7p + 3) = 0$ 1 + 2 - 7p - 3 = 03 - 7p - 3 = 07p = 0p = 0Thus, $p(x) = x^2 - 2x - 3$ For finding zeros of p(x), we put, p(x) = 0 $x^2 - 2x - 3 = 0$ $x^2 - 3x - x - 3 = 0$ x(x-3) + 1(x-3) = 0(x-3)(x+1) = 0Put x - 3 = 0 and x + 1 = 0, we get, Thus, x = 3, -1 Thus, the other zero is 3.

31.
$$S_{n} = \frac{3n^{2}}{2} + \frac{13n}{2}$$
$$S_{n} = \frac{3n^{2} + 13n}{2}$$
$$a_{n} = S_{n} - S_{n-1}$$
or, $a_{25} = S_{25} - S_{24}$
$$= \frac{3(25)^{2} + 13(25)}{2} - \frac{3(24)^{2} + 13(24)}{2}$$
$$= \frac{1}{2}[3(25^{2} - 24^{2}) + 13(25 - 24)]$$
$$= \frac{1}{2}[3 (625 - 576) + 13 (1)]$$
$$= \frac{1}{2}(3 \times 49 + 13)$$
$$= \frac{1}{2}(147 + 13)$$
$$= \frac{1}{2}(160)$$
$$= 80$$

32. If two expressions are equal for all the values of same parameter or parameters , then the statement of equality between the two expressions is called an identity.

H
B
Let, tan A =
$$\frac{P}{B}$$
, sec A = $\frac{H}{B}$
H² = P² + B²
LHS = 1 + tan²A
= 1 + $\left(\frac{P}{B}\right)^2 = 1 + \frac{p^2}{B^2}$
= $\frac{B^2 + P^2}{B^2} = \frac{H^2}{B^2}$
= $\left(\frac{H}{B}\right)^2$
= sec²A
= R.H.S
Hence Proved.

OR

Radius of a circle including path = 8.75 + 2 = 10.75 m According to question,

Area of the path = Area of a circle including path - Area of a pond
=
$$\pi (10.75)^2 - \pi (8.75)^2$$

= $\pi \left[(10.75)^2 - (8.75)^2 \right]$
= $\frac{22}{7} [(10.75 + 8.75)(10.75 - 8.75)]$
= $\frac{22}{7} [19.5 \times 2]$
= $\frac{22}{7} \times 39$
= $\frac{858}{7} sq.m$
= 122.5 sq.m

Cost of constructing the path = 25 imes 122.5= Rs.3062.50

34. According to question we are given that Cards marked with numbers 5 to 50 are placed in a box and mixed thoroughly. A card is drawn from the box at random. Therefore All possible outcomes are 5, 6, 7, 850.

Number of all possible outcomes = 46

i. Out of the given numbers, the prime numbers less than 10 are 5 and 7.

Suppose E_1 be the event of getting a prime number less than 10.

Then, number of favorable outcomes = 2

Therefore, P(getting a prime number less than 10) = P(E) = $\frac{2}{46} = \frac{1}{23}$

ii. Out of the given numbers, the perfect squares are 9, 16, 25, 36 and 49. Suppose E_2 be the event of getting a perfect square.

Then, number of favorable outcomes = 5

Therefore, P(getting a perfect square) = P(E) = $\frac{5}{46}$

```
Section D
```


To construct: To construct a triangle ABC with side BC = 6 cm, AB = 5 cm and $\angle ABC = 60^{\circ}$ then a triangle similar to it whose sides are $\frac{3}{4}$ of the corresponding sides of the first triangle ABC. Steps of construction:

i. Draw a triangle ABC with side BC = 6 cm, AB = 5 cm and $\angle ABC = 60^\circ$.

ii. From any ray BX, making an acute angle with BC on the side opposite to the vertex A.

iii. Locate 4 points B₁, B₂, B₃ and B₄ on BX such that BB₁ = B₁ B₂ = B₂ B₃ = B₃ B₄.

iv. Join B₄ C and draw a line through the point B₃, draw a line parallel to B₄ C intersecting BC at the point C'.

v. Draw a line through C' parallel to the line CA to intersect BA at A'.

Then, A'BC' is the required triangle.

Justification :

 $\therefore B_4 C || B_3 C' \text{ [By construction]} \\\therefore \frac{BB_3}{BB_4} = \frac{BC'}{BC} \text{ [By Basic Proportionality Theorem]} \\\text{But } \frac{BB_3}{BB_4} = \frac{3}{4} \text{ [By construction]} \\\text{Therefore, } \frac{BC'}{BC} = \frac{3}{4} \dots \dots \dots \text{ (i)} \\\therefore \text{ CA } || \text{ CA' [By construction]} \\$

$$\therefore \triangle BC'A \sim \triangle BCA \text{ [AA similarity]}$$
$$\therefore \frac{AB'}{AB} = \frac{A'C'}{AC} = \frac{BC'}{BC} = \frac{3}{4} \text{ [From eq. (i)]}$$

OR

Steps of construction

STEP I Draw the line segment AB of length 8 cm.

STEP II Draw any ray AX making an acute angle \angle BAX with AB.

STEP III Draw a ray BY parallel to AX by making $\angle ABY$ equal to $\angle BAX$.

STEP IV Mark the three point A_1 , A_2 , A_3 on AX and 4 points B_1 , B_2 , B_3 , B_4 on BY such that $AA_1 = A_1A_2 = A_2A_3 = BB_1 = B_1B_2 = B_2B_3 = B_3B_4$.

Then, P is the point dividing AB internally in the ratio 3:4.

36. Given:


```
To prove: \Delta ABC \cong \Delta PQR

Proof: \Delta ABC \sim \Delta PQR

Also \operatorname{ar}(\Delta ABC) = \operatorname{ar}(\Delta PQR) (given)

or, \frac{\operatorname{ar}(\Delta ABC)}{\operatorname{ar}(\Delta PQR)} = 1

Or \frac{AB^2}{PQ^2} = \frac{BC^2}{QR^2} = \frac{CA^2}{RP^2} = 1

Or \frac{AB}{PQ} = \frac{BC}{QR} = \frac{CA}{RP} = 1

Hence we get that

AB=PQ,BC=QR and CA=RP

Hence \Delta ABC \cong \Delta PQR
```

37. Let the length and breadth of the rectangular park be 'L' and 'B' respectively.

Case 1-

If the length and the breadth of the park is decreased by 2 m respectively, its area is decreased by 196 square meter.

Therefore, the area will be = (L imes B) - 196

 $(L - 2) (B - 2) = L \times B - 196$

LB - 2B - 2L +4 = LB -196

- 2B - 2L = - 196 - 4

- 2B - 2L = - 200(1)

Case 2-

If the length of the park is increased by 3 m and breadth is increased by 2 m, then its area is increased by 246 square meter.

Therefore, the area will be = (L \times B) + 246

 $(L + 3) (B + 2) = L \times B + 246$ LB + 3B + 2L + 6 = LB + 2463B + 2L = 246 - 6 $3B + 2L = 240 \dots (2)$ Adding equation (1) and (2), we get, B = 40Substituting the value B = 40 in equation (2), we get 3B + 2L = 240 $3 \times 40 + 2L = 240$ 120 + 2L = 2402L = 240 - 120 2L = 120L = 60So, the length and breadth of the park is 60 m and 40 m respectively. OR $\lambda x + y = \lambda^2$ and $x + \lambda y = 1$ We know that the system of linear equations $a_1x + b_1y + c_1 = 0$(i) $a_2x + b_2y + c_2 = 0$(ii) i. has no solution, if $\frac{a_1}{a_2} = \frac{b_1}{b_2} \neq \frac{c_1}{c_2}$ $\Rightarrow \frac{\lambda}{1} = \frac{1}{\frac{\lambda}{\Pi}} \neq \frac{\lambda^2}{\frac{1}{\Pi}}$ From I and II, we get $\lambda^2 = 1$ $\Rightarrow \lambda = \pm 1.$ but from II & III; we get $\lambda^3
eq 1$ $\Rightarrow \lambda \neq 1$ $\Rightarrow \lambda = -1$ ii. has infinitely many solutions, if $\frac{a_1}{a_2} = \frac{b_1}{b_2} = \frac{c_1}{c_2}$ $\Rightarrow \frac{\lambda}{1} = \frac{1}{\lambda} = \frac{\lambda^2}{1}$ $\Rightarrow \lambda^2$ = 1 (from I & II part) $\Rightarrow \lambda = \pm 1$ (a) Also, $\frac{\lambda}{1} = \frac{\lambda^2}{1}$ (from I & III part) $\Rightarrow \lambda^2 = \lambda$ $\Rightarrow \lambda^2 - \lambda = 0$ $\Rightarrow \lambda(\lambda - 1) = 0$ $\Rightarrow \lambda = 0, \lambda = 1....(b)$: Common solution from equations (a) &(b) for which the pair of linear equations has infinitely many solutions is $\lambda = 1$ only. iii. For a unique solution, $\frac{a_1}{a_2} \neq \frac{b_1}{b_2}$ $\therefore \frac{\lambda}{1} \neq \frac{1}{\lambda}$ $\Rightarrow \lambda^2 \neq 1 \text{ or } \lambda \neq 1, -1$ So, for the unique solution all real value except λ = 1, -1. 38. Diameter of cylindrical pipe = 7 cm \therefore Radius of cylindrical pipe = $\frac{7}{2}$ cm = 3.5 cm Volume of water flows in 1 min = 192.5 litres Volume of water that flows per hour = (192.50×60) litres $=(192.50 imes 60 imes 1000) {
m cm}^3$ (I) Let h cm be the length of the column of water that flows in one hour.

Clearly, water column forms a cylinder of radius 3.5 cm and length h cm.

... Volume of water that flows in one hour

= $\pi r^2 h$ Volume of the cylinder of radius 3.5 cm and length h cm = $\left[\frac{22}{7} \times (3.5)^2 \times h\right] \text{cm}^3$...(ii) From (i) and (ii), we have

 $\pi r^2 h = 192.50 \times 60 \times 1000$

 $\begin{array}{l} \frac{22}{7} \times 3.5 \times 3.5 \times h = 192.50 \times 60 \times 1000 \\ \Rightarrow \quad h = \frac{192.50 \times 60 \times 1000 \times 7}{22 \times 3.5 \times 3.5} \text{cm} = 300000 \text{ cm} = 3 \text{ km} \\ \text{Hence, the rate of flow of water is 3 km per hour.} \end{array}$

OR

Let ABB 'A' be the friction clutch of slant height l cm.

We have,

R = 16 cm, r = 10 cm and h = 8 cm ∴ $l^2 = h^2 + (R - r)^2$ $= (8)^2 + (16 - 10)^2$ $= 64 + (6)^2$ $\Rightarrow l^2 = 64 + 36 \Rightarrow l = 10 cm$ Bearing surface of the clutch = Lateral surface of the frustum $\Rightarrow S = \pi (R + r) l$ $= \frac{22}{7} \times (16 + 10) \times 10 cm^2$ $= 817.14 cm^2$ $V = \frac{1}{3} \pi h (R^2 + Rr + r^2)$ $\Rightarrow V = \frac{1}{3} \times \frac{22}{7} \times 8 \times (16^2 + 16 \times 10 + 10^2) cm^3$ $\Rightarrow V = \frac{1}{3} \times \frac{22}{7} \times 8 \times (256 + 160 + 100) cm^3 = \frac{176}{21} \times 516 cm^3$ $= 4324.57 cm^3$

39. Let us suppose that AB be the tower and CD be the building. Then, CD = 60m.

Suppose CAX be the horizontal ground. Draw $DE \perp AB$. Now, $\angle EDB = 30^{\circ}$ (given) and $\angle CAD = \angle ADE = 60^{\circ}$. (given) Also, it is given that AE = CD = 60m. Let us suppose that BE = h metres. From right $\triangle ACD$, we have $\frac{CA}{CD} = \cot 60^{\circ} = \frac{1}{\sqrt{3}}$ $\Rightarrow \frac{CA}{60m} = \frac{1}{\sqrt{3}} \Rightarrow CA = \frac{60}{\sqrt{3}}$ (i) From right $\triangle EDB$, we have $\frac{DE}{BE} = \cot 30^{\circ} = \sqrt{3} \Rightarrow \frac{DE}{h} = \sqrt{3}$ $\Rightarrow DE = h\sqrt{3}m$ (ii) But, according to question it is given that CA = DE. \therefore from (i) and (ii), we get

$$rac{60}{\sqrt{3}} = h\sqrt{3} \Rightarrow 3h = 60 \Rightarrow h = 20$$

Hence, the difference between the heights of the tower and the building is 20 metres.

Again from (i), we have $CA=\left(rac{60}{\sqrt{3}} imesrac{\sqrt{3}}{\sqrt{3}}
ight)$ (by rationalization)

= 20 √3 metres

Hence, the distance between the tower and the building is $20\sqrt{3}$

40. More Than Series:

Class Interval	Cumulative Frequency
More than 0	66
More than 10	44
More than 20	34
More than 30	26
More than 40	11
More than 50	6

We plot the points (0, 66), (10, 44), (20, 34), (30, 26), (40, 11), and (50, 6) to get more than ogive. Less Than Series:

Class Interval	Cumulative Frequency
Less than 10	22
Less than 20	32
Less than 30	40
Less than 40	55
Less than 50	60
Less than 60	66

We plot the points (10, 22), (20, 32), (30, 40), (40, 55), (50, 60) and (60, 66) to get less than ogive.

From the graph, median = 21.25 cm