Solution

Class 10 - Mathematics

Sample Paper 2

Section A

1. (a)

0.5

Explanation: $9^{x+2} = 240 + 9^x$ $\Rightarrow 9^x \cdot 9^2 = 240 + 9^x$ $\Rightarrow 9^x (81 - 1) = 240$ $\Rightarrow 9^x = 3$ $\Rightarrow 9^x = 9^{\frac{1}{2}}$ $\Rightarrow x = \frac{1}{2} = 0.5$

2. (b)

a rational number

Explanation:

$$\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}-\sqrt{b}\right) = \left\{\left(\sqrt{a}\right)^2 - \left(\sqrt{b}\right)^2\right\}$$

= $(a-b)$

Since a and b both are positive rational numbers, therefore difference of two positive rational numbers is also rational.

3. (d)

62

Explanation:

$$egin{aligned} \overline{x} &= a + rac{\sum f_i u_i}{\sum f_i} imes h \ &= 47.5 + rac{29}{30} imes 15 \ &= 47.5 + rac{29}{2} \ &= 47.5 + 14.5 \ &= 62 \end{aligned}$$

30 and 35

Explanation:

Let one multiple of 5 be x then the next consecutive multiple of will be (x + 5) According to question, x(x+5) = 1050 $\Rightarrow x^2 + 5x - 1050 = 0$ $\Rightarrow x^2 + 35x - 30x - 1050 = 0$ $\Rightarrow x(x+35) - 30(x+35) = 0$ $\Rightarrow (x-30)(x+35) = 0$

 $\Rightarrow (x - 30) (x + 33) = 0$ $\Rightarrow x - 30 = 0 \text{ and } x + 35 = 0$ $\Rightarrow x = 30 \text{ and } x = -35$ x = -35 is not possible therefore x = 30Then the other multiple of 5 is x + 5 = 30 + 5 = 35Then the number are 30 and 35.

5. (a)

 90°

Explanation:
Given:
$$\sin \alpha = \frac{1}{\sqrt{2}}$$

 $\Rightarrow \sin \alpha = \sin 45^{\circ}$
 $\Rightarrow \alpha = 45^{\circ}$
And $\cos \beta = \frac{1}{\sqrt{2}}$
 $\Rightarrow \cos \beta = \cos 45^{\circ}$
 $\Rightarrow \beta = 45^{\circ}$
 $\therefore \alpha + \beta = 45^{\circ} + 45^{\circ} = 90^{\circ}$

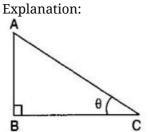
6. (d)

 $an 60^{0}$

Explanation: $\frac{\frac{2tan \ 30^{0}}{1-tan^{2} \ 30^{0}}}{=\frac{2 \times \frac{1}{\sqrt{3}}}{1-(\frac{1}{\sqrt{3}})^{2}} = \frac{\frac{2}{\sqrt{3}}}{1-\frac{1}{3}}}$ $= \frac{\frac{2}{\sqrt{3}}}{\frac{2}{3}} = \frac{2}{\sqrt{3}} \times \frac{3}{2} = \sqrt{3} = tan \ 60^{0}$

7. (b)

 60°



Given: the height of the pole = AB = 6 m and the length of the shadow = BC = $2\sqrt{3}$ m

$$\therefore \tan \theta = \frac{AB}{BC} \\ \Rightarrow \tan \theta = \frac{6}{2\sqrt{3}} \\ \Rightarrow \tan \theta = \frac{3}{\sqrt{3}} \\ \Rightarrow \tan \theta = \frac{\sqrt{3} \times \sqrt{3}}{\sqrt{3}} \\ \Rightarrow \tan \theta = \frac{\sqrt{3} \times \sqrt{3}}{\sqrt{3}} \\ \Rightarrow \tan \theta = \sqrt{3} \\ \Rightarrow \tan \theta = \tan 60^{\circ} \\ \Rightarrow \theta = 60^{\circ}$$

8. (a)

- 5

Explanation: Since x-coordinate of a point is called abscissa. Therefore, abscissa is -5.

9. (c)

abscissa

Explanation:

The distance of a point from the y – axis is the x (horizontal) coordinate of the point and is called abscissa.

10. (a)

0.24

Explanation: Given: P (It will rain on a particular day) = 0.76 \therefore P (It will not rain on a particular day) = 1 – P (It will rain particular day) = 1 - 0.76 = 0.2411. 2(l + b)h sq units 12. -3 OR $\frac{-1}{2}$ 13. equilateral 14. $\sqrt{3}$ 15. $4\sqrt{2}$ 16. Clearly, the given number 23.123456789 is a terminating decimal. So, it is rational. Therefore, it can be expressed in $\frac{p}{q}$, where q = 10⁹ and factors of q are of the form $2^{m} \times 5^{n}$, where n and m are positive integers. 17. Given: AB = 5.6 cm, AD = 1.4 cm, AC = 7.2 cm and AE = 1.8 cm $\frac{AD}{AB} = \frac{1.4}{5.6} = \frac{1}{4} \text{ and } \frac{AE}{AC} = \frac{1.8}{7.2} = \frac{1}{4}$ $\frac{AD}{AB} = \frac{AE}{AC}$ ·**·**. \Rightarrow Hence, by the converse of Thales' theorem, DE || BC. 18. Here, a = p and d = qWe know that $a_n = a_1 + (n-1)d$ $a_{10} = p + (10 - 1)q = p + 9q$ Hence, 10th term of the AP is p + 9q. OR Here, $a = -37, \, d = -33 - (-37) = -33 + 37 = 4$ and n = 12Now we know that , $S_n = \frac{n}{2} [2a + (n-1)d]$ Therefore, S $_{12}$ = $rac{12}{2}$ [2imes(-37) + (12-1)4] = 6[-74+44] $= 6 \times (-30)$

= -180

Therefore, sum of given A.P is -180.

Consider C is an external point as shown in figure.

According to theorem, from an external point only two tangents can be drawn to a circle. So, value of k = 2

20. $x^2 + 6x + 9 = 0$.

Put x = -3 in the equation $\Rightarrow (-3)^2 + 6(-3) + 9$ $\Rightarrow 9 - 18 + 9 = 0$

Hence, it is a solution of the given equation.

Section **B**

21. H- Heads T- Tails

Total number of outcomes = 8 (HHH, HHT, HTH, THH, HTT, THT, TTH, TTT) Favourable number of outcomes (HHH, TTT) = 2 Probability (getting success) = $\frac{2}{8}$ or $\frac{1}{4}$ \therefore Probability (losing the game) = 1- P(getting success) = 1- $\frac{1}{4} = \frac{3}{4}$ 22. We have, $kx^{2} - 2\sqrt{5}x + 4 = 0$ Here, a = k, b = $-2\sqrt{5}$ and c = 4 $\therefore D = b^{2} - 4ac$ = $(-2\sqrt{5})^{2} - 4 \times k \times 4$ = 20 - 16k $\Rightarrow D = 20 - 16k$ The given equation will have real and equal roots, if D = 0 $\Rightarrow 20 - 16k = 0$ $\Rightarrow 16k = 20$ $\Rightarrow k = \frac{20}{16} = \frac{5}{4}$ $\therefore k = \frac{5}{4}$

23. Join BX

In ABX, U is midpoint of AB and Y is mid-point AX (given)

....(i) UY || BX (using mid-point theorem)(i)

In BCX, v is mid-point of BC and z is mid-point of XC VZ || BX ..(ii) from (i) and (ii) UY || VZ In ABC, U is mid-point of AB and V is mid-point of BE. \therefore UV || AC \Rightarrow UV || YZ Hence proved.

OR

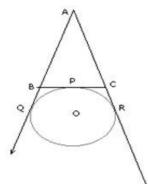
Given: ABC and DBC are two triangles on the same base BC but on the opposite sides of BC, AD intersects BC at O.

construction: Draw AL \perp BC and DM \perp BC To prove: $\frac{ar(\triangle ABC)}{ar(\triangle DBC)} = \frac{AO}{EO}$ Proof: In \triangle ALO and \triangle DMO \angle ALO = \angle DMO [Each 90°] \angle AOL = \angle DOM [Vertically opposite angles] $\therefore \triangle$ ALO $\sim \triangle$ DMO [By AA similarity] $\Rightarrow \frac{AL}{DM} = \frac{AO}{DO}$ $\therefore \frac{ar(\triangle ABC)}{ar(\triangle DBC)} = \frac{\frac{1}{2} \times BC \times AL}{\frac{1}{2} \times BC \times DM} = \frac{AL}{DM} = \frac{AO}{DO}$ 24. Let AB is the tower, AB = 15m, BC = 15mIn right \triangle ABC, $\tan \theta = \frac{AB}{BC}$ $\Rightarrow \tan \theta = \frac{15}{15}$ $\Rightarrow \tan \theta = 1 \Rightarrow \theta = 45^{\circ}$ 25. Given: PQ and PR are tangents to a circle with centre O and \angle QPR = 50°.

To find: ∠QSR

 $\angle QOR + \angle QPR = 180^{\circ}$ $\Rightarrow \angle QOR + 50^{\circ} = 180^{\circ}$ $\Rightarrow \angle QOR = 130^{\circ}$ $\Rightarrow \angle QSR = \frac{1}{2} \angle QOR$ $\Rightarrow \angle QSR = \frac{1}{2} \times 130^{\circ} = 65^{\circ}$

OR



We know that the two tangents drawn to a circle from an external point are equal.

 $\therefore AQ = AR, BP = BQ, CP = CR$ $\therefore Perimeter of \triangle ABC = AB + BC + AC$ = AB + BP + PC + AC $= AB + BQ + CR + AC [\because BP = BQ, PC = CQ]$ $= AQ + AR = 2AQ = 2AR = [\because AQ = AR]$ $= AQ = AR = \frac{1}{2} [Perimeter of \triangle ABC]$

26. For cone, Radius of the base (r)

$$= 2.5 \text{ cm} = \frac{5}{2} \text{ cm}$$
Height (h) = 9 cm

$$\therefore \text{ Volume} = \frac{1}{3} \pi r^2 h$$

$$= \frac{1}{3} \times \frac{22}{7} \times \frac{5}{2} \times \frac{5}{2} \times 9$$

$$= \frac{825}{14} \text{ cm}^3$$

For hemisphere, Radius (r) = 2.5cm = $\frac{5}{2}$ cm \therefore Volume = $\frac{2}{3}\pi r^3$ = $\frac{2}{3} \times \frac{22}{7} \times \frac{5}{2} \times \frac{5}{2} \times \frac{5}{2} = \frac{1375}{42}$ cm³

i. The volume of the ice-cream without hemispherical end = Volume of the cone $=\frac{825}{14}$ cm³

ii. Volume of the ice-cream with hemispherical end = Volume of the cone + Volume of the hemisphere

$$= \frac{825}{14} + \frac{1375}{42} = \frac{2475 + 1375}{42} \\= \frac{3850}{42} = \frac{275}{3} = 91\frac{2}{3}\text{cm}^3$$

Section C

27. We can prove $7\sqrt{5}$ irrational by contradiction. Let us suppose that $7\sqrt{5}$ is rational. It means we have some co-prime integers *a* and *b* ($b \neq 0$) such that $7\sqrt{5} = \frac{a}{b}$ $\Rightarrow \sqrt{5} = \frac{a}{7b}$ (1) R.H.S of (1) is rational but we know that $\sqrt{5}$ is irrational. It is not possible which means our supposition is wrong. Therefore, $7\sqrt{5}$ cannot be rational. Hence, it is irrational. OR Let take that $3 + 2\sqrt{5}$ is a rational number. So we can write this number as $3 + 2\sqrt{5} = \frac{a}{b}$ Here a and b are two co-prime numbers and b is not equal to 0. Subtract 3 both sides we get, $2\sqrt{5} = \frac{a}{b} - 3$ $2\sqrt{5} = \frac{a-3b}{b}$ Now divide by 2 we get $\sqrt{5} = \frac{a-3b}{2b}$ Here a and b are an integer so $rac{a-3b}{2b}$ is a rational number so $\sqrt{5}$ should be a rational number but $\sqrt{5}$ is an irrational number so it contradicts the fact. Hence the result is $3 + 2\sqrt{5}$ is an irrational number Now its square will again contain an irrational number. Hence the given number is an irrational number. 28. Let the 1st term of AP be a and common difference be d. Now, three middle terms of this AP are a_{10} , a_{11} and a_{12} from question, we have, a₁₀ + a₁₁ + a₁₂ = 129 \Rightarrow (a + 9d) + (a + 10d) + (a + 11d) = 129 \Rightarrow 3a + 30d = 129 \Rightarrow a + 10d = 43 \Rightarrow a = 43 - 10d(i) Also, last three terms are a_{19} , a_{20} and a_{21} $\therefore a_{19} + a_{20} + a_{21} = 129$ \Rightarrow (a + 18d) + (a + 19d) + (a + 20d) = 237 \Rightarrow 3a + 57d = 237 \Rightarrow a + 19d = 79 \Rightarrow 43 - 10d + 19d = 79 [using eq. (i)] \Rightarrow 9d = 36 \Rightarrow d = 4 When d = 4, equation (i) becomes a = 43 - 10(4) = 3 : AP is 3, 7, 11, 15, ... 29. 4x + 6y = 3xy4x + 0y = 3xy $\Rightarrow \frac{4x+6y}{xy} = 3$ $\frac{4}{y} + \frac{6}{x} = 3$ (i) $\frac{8x+9y}{xy} = 5$ $\frac{8}{y} + \frac{9}{x} = 4$ (ii) Putting $\frac{1}{x}$ =u and $\frac{1}{y}$ = v, the given equations

 $\begin{array}{l} 4u+6v=3\,.....(\text{iii})\\ 8u+9v=5\,....(\text{iv})\\ \text{Multiplying (iii) by 9 and (iv) by 6, we get}\\ 36v+54u=27\,.....(v)\\ 48v+54u=30\,.....(vi)\\ \text{Subtracting (iii) from (iv), we get}\\ 12v=3\\ v=\frac{3}{12}=\frac{1}{4}\\ \text{Putting v}=\frac{1}{4}\text{ in (iii), we get}\\ 4\times\frac{1}{4}+6u=3\\ 1+6u=3\\ 6u=3-1=2\\ u=\frac{2}{6}=\frac{1}{3}\\ \text{Now, }u=\frac{1}{x}\Rightarrow\frac{1}{x}=\frac{1}{3}\Rightarrow x=3\\ \text{and, }v=\frac{1}{y}\Rightarrow\frac{1}{y}=\frac{1}{4}\Rightarrow y=4\\ \text{Hence, the solution is x}=3, y=4 \end{array}$

OR

We have to solve the following systems of equations by using the method of substitution:

 $\frac{2x}{a} + \frac{y}{b} = 2$ $\frac{x}{a} - \frac{y}{b} = 4$ The given system of equations are: $\frac{2x}{a} + \frac{y}{b} = 2$(i) $\frac{x}{a} - \frac{y}{b} = 4$(ii) From equation (i), we get $\frac{y}{b} = 2 - \frac{2x}{a}$ $\Rightarrow y = b\left(2 - \frac{2x}{a}\right)$ Substituting $y = b\left(2 - \frac{2x}{a}\right)$ in equation (ii), we get $\frac{x}{a} - \frac{b}{b}\left(2 - \frac{2x}{a}\right) = 4$ $\Rightarrow \quad \frac{x}{a} - 2 + \frac{2x}{a} = 4$ $\Rightarrow \quad \frac{3x}{a} = 6$ $\Rightarrow 3x = 6a$ $\Rightarrow x = 2a$ Putting x = 2a in equation (i), we get $4 + \frac{y}{b} = 2$ $\Rightarrow \frac{y}{b} = -2$ $\Rightarrow y = -2b$

Hence, the solution of the given system of equations is x = 2a and y = -2b.

30. It is given $f(x)= 6x^3 + 11x^2 - 39x - 65$ and $g(x) = x^2 - 1 + x$. So now on long division of f(x) by g(x)

$$x^{2} + x - 1 \overline{\smash{\big)}\ 6x^{3} + 11x^{2} - 39x - 65} (6x + 5) \\ 6x^{3} + 6x^{2} - 6x \\ - - + \\ 5x^{2} - 33x - 65 \\ 5x^{2} + 5x - 5 \\ - - + \\ -38x - 60 \\ - - + \\ -38x - 60 \\ - - + \\ - - + \\ - - - \\ - - + \\ - - - \\ - - + \\ - - - \\ - - \\ - - \\ - - \\ - - \\ - - \\ - - \\ - - \\ - - \\ - \\ - - \\ -$$

Hence quotient q(x)=6x+5 and remainder r(x)=-38x-60Also, $g(x) q(x) + r(x) = (x^2 + x - 1) (6x + 5) + (-38x - 60)$ $= 6x^3 + 6x^2 - 6x + 5x^2 + 5x - 5 - 38x - 60$ i.e. $f(x) = g(x) q(x) + r(x) = 6x^3 + 11x^2 - 39x - 65$

or, Dividend = Quotient \times Divisor + Remainder

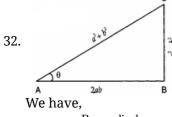
31. If points are collinear, then one point divides the other two in the same ratio. Let point (m, 6) divides the join of (3, 5) and $(\frac{1}{2}, \frac{15}{2})$ in the ratio k: 1.

Then, (m, 6) =
$$\left(\frac{\frac{k}{2}+3}{k+1}, \frac{15k}{k+1}\right)$$

 \Rightarrow m = $\frac{\frac{k}{2}+3}{k+1}$...(i)
and 6 = $\frac{\frac{15}{2}k+5}{k+1}$...(ii)
From (ii), we get 6k + 6 = $\frac{15k}{2}$ + 5
 \Rightarrow 6k - $\frac{15k}{2}$ = -1
 \Rightarrow - $\frac{3}{2}k$ = -1
 \Rightarrow k = $\frac{2}{3}$
Substituting, k = $\frac{2}{3}$ in (i), we get

 $m = \frac{\frac{1}{2} \times \frac{2}{3} + 3}{\frac{2}{3} + 1} = \frac{\frac{1}{3} + 3}{\frac{2}{3} + 1} = \frac{\frac{10}{3}}{\frac{5}{3}} = 2$

Hence, for m = 2 points are collinear.

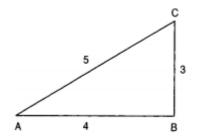


 $\sin heta = rac{ ext{Perpendicular}}{ ext{Hypotenuse}} = rac{a^2-b^2}{a^2+b^2}$

So, Let us draw a right triangle ABC in which $\angle B$ is right angle, we have Perpendicular = BC = $a^2 - b^2$ Hypotenuse = AC = $a^2 + b^2$ and, $\angle BAC = \theta$ By Pythagoras theorem, we have

$$\begin{array}{l} \operatorname{AC}^{2} = \operatorname{AB}^{2} + \operatorname{BC}^{2} \\ \Rightarrow \quad \left(a^{2} + b^{2}\right)^{2} = AB^{2} + \left(a^{2} - b^{2}\right)^{2} \\ \Rightarrow \quad AB^{2} = \left(a^{2} + b^{2}\right)^{2} - \left(a^{2} - b^{2}\right)^{2} \\ \Rightarrow \quad AB^{2} = \left(a^{4} + b^{4} + 2a^{2}b^{2}\right) - \left(a^{4} + b^{4} - 2a^{2}b^{2}\right) \\ \Rightarrow \quad AB^{2} = 4a^{2}b^{2} = (2ab)^{2} \\ \Rightarrow \quad AB = 2ab \\ \operatorname{Now, } \operatorname{Let} \angle BAC = \theta \\ \operatorname{We have} \\ \operatorname{Base} = \operatorname{AB} = 2ab, \operatorname{Perpendicular} = \operatorname{BC} = a^{2} - b^{2}, \operatorname{Hypotenuse} = \operatorname{AC} = a^{2} + b^{2} \\ \operatorname{Therefore,} \quad \cos \theta = \frac{\operatorname{Base}}{\operatorname{Hypotenuse}} = \frac{2ab}{a^{2} + b^{2}}, \ \tan \theta = \frac{\operatorname{Perpendicular}}{\operatorname{Base}} = \frac{a^{2} - b^{2}}{2ab} \\ \operatorname{cosec} \theta = \frac{\operatorname{Hypotenuse}}{\operatorname{Perpendicular}} = \frac{a^{2} + b^{2}}{a^{2} - b^{2}}, \quad \operatorname{sec} \theta = \frac{\operatorname{Hypotenuse}}{\operatorname{Base}} = \frac{a^{2} + b^{2}}{2ab} \\ \operatorname{and, } \cot \theta = \frac{\operatorname{Base}}{\operatorname{Perpendicular}} = \frac{2ab}{a^{2} - b^{2}} \end{array}$$

OR



According to the question, $\sin A = rac{ ext{Perpendicular}}{ ext{Hypotenuse}} = rac{3}{5}$ Draw a right triangle right angled at B such that Perpendicular = BC = 3 and, Hypotenuse = AC = 5Using Pythagoras theorem, $\Rightarrow AC^2 = AB^2 + BC^2$ $\Rightarrow 5^2 = AB^2 + 3^2$ $AB^2 = 25 - 9 = 16$ \Rightarrow $AB = \sqrt{16} = 4$ \Rightarrow Consider the trigonometric ratios of $\angle C$, we have Base = BC = 3, Perpendicular = AB = 4 and, Hypotenuse = AC = 5. $\therefore \quad \sin C = \frac{\text{Perpendicular}}{\text{Hypotenuse}} = \frac{4}{5}, \quad \cos C = \frac{\text{Base}}{\text{Hypotenuse}} = \frac{3}{5}$ $\tan C = \frac{\text{Perpendicular}}{\text{Base}} = \frac{4}{3}, \quad \csc C = \frac{\text{Hypotenuse}}{\text{Perpendicular}} = \frac{5}{4}$ $\sec C = \frac{\text{Hypotenuse}}{\text{Base}} = \frac{5}{3} \text{ and, } \cot C = \frac{\text{Base}}{\text{Perpendicular}} = \frac{3}{4}$ 33. We have, Rate of fencing = Rs 24 per metre and, Total cost of fencing = Rs 5280 : Length of the fence = $\frac{\text{Total cost}}{\text{Rate}} = \frac{5280}{24}$ = 220 metre \Rightarrow Circumference of the field = 220 metre $\Rightarrow 2\pi r = 220$, where r is the radius of the field

$$\Rightarrow 2 \times \frac{22}{7} \times r = 220$$

$$\Rightarrow 2 \times \frac{22}{7} \times r = 220$$

$$\Rightarrow r = \frac{220 \times 7}{22 \times 2} = 35$$

Area of the field = $\pi r^2 = \frac{22}{7} \times 35 \times 35m^2 = 22 \times 5 \times 35m^2$

It is given that the field is ploughed at the rate of Rs 0.50 per m²

Cost of ploughing the field = Rs $(22 \times 5 \times 35 \times 0.50)$ = Rs 1925

34. The given series is an inclusive series. Making it an exclusive series by subtracting 0.5 from lower limit and adding 0.5 in upper limit, we get

Class Interval(Exclusive)	Frequency(f _i)	Mid value x _i	$u_i = \frac{(x_i - A)}{h}$	($f_i imes u_i$)
24.5 - 29.5	14	27	-3	-42
29.5 - 34.5	22	32	-2	-44
34.5- 39.5	16	37	-1	-16
39.5 - 44.5	6	42 = A	0	0
44.5 - 49.5	5	47	1	5
49.5 - 54.5	3	52	3	12
54.5 - 59.5	4	57	3	12
	$\Sigma f_i = 70$			$\Sigma\left(f_i imes u_i ight)=-79$

$$egin{aligned} \overline{A} = 42, h = 5, \Sigma f_i = 70 ext{ and } \Sigma \left(f_i imes u_i
ight) = -79 \ dots ext{ mean }, \overline{x} = \left\{ A + rac{h imes (\Sigma f_i imes u_i)}{\Sigma f_i}
ight\} \ = 42 + \left\{ 5 imes rac{(-79)}{70}
ight\} \ = 42 - 5.64 \ = 36.36 \end{aligned}$$

Section D

35. A₁ A₁ A₂ A₃ A₄ A₅ A₆ A₇ A₈ A₉ A₁₀ X

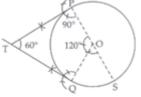
We have to draw a line segment of length 5 cm and divide it in the ratio 3 : 7.We write the steps of construction as follows:

Steps of Construction:

- i. Draw a line segment AB = 5 cm.
- ii. Draw any ray AX making an acute angle down ward with AB.
- iii. Mark the poitns A_1 , A_2 , A_3 A_{10} on AX such that $AA_1 = A_1A_2$ = A_9A_{10} .
- iv. Join BA₁₀.
- v. Through the point A_3 draw a line parallel to BA_{10} . To meet AB at P. Hence AP : PB = 3 : 7

OR

Angle between tangents is 60°. So angles between their radii is 180° - 60° = 120°. As the angles between tangents and their corresponding radii are supplementary.



Steps of construction:

- i. Draw a circle of radius 4 cm.
- ii. Draw any diameter POS.
- iii. Draw OQ making $\angle AOC = 120^{\circ}$.
- iv. Draw tangent at P by drawing $\angle OPT = 90^\circ$.
- v. Similarly, draw ∠OQT equal to 90° to draw tangent.
- vi. Both PT and QT tangents intersect at T and make angle of 60°.

Hence, the two tangents on circle are TP and TQ inclined at 60°.

Justification: Because the radius OP and tangent PT at contact point makes angle ∠TPO=90°

Similarly, $\angle TQO = 90^{\circ}$

In quadrilateral TPOQ.

 $\angle T + \angle P + \angle O + \angle Q = 360^{\circ}$

 $\Rightarrow \angle T + 90^{\circ} + 120^{\circ} + 90^{\circ} = 360^{\circ} [\because \angle O = 120^{\circ} \text{ by construction}]$

- ⇒ ∠T = 360° 300°
- $\Rightarrow \angle T = 60^{\circ}.$

Hence, verified.

36. Given : $\Delta PMS \sim \Delta QMR$ and PQ||SR.

To show PS = QR $\therefore \triangle PMS \sim \triangle QMR$ PS PM MS

$$\therefore \frac{PS}{QR} = \frac{PM}{QM} = \frac{MS}{MR} \dots$$
(i)

[corresponding sides of similar triangles are proportional] Now, consider riangle PMQ and riangle RMSIn these triangles, we have

 $\angle PMQ = \angle RMS$ [vertically opposite angles] $\angle MPQ = \angle MRS$ [alternate angles] $\therefore riangle PMQ \sim riangle RMS$ [AA criteria] $\therefore \frac{PM}{RM} = \frac{MQ}{MS}$ [corresponding sides of similar triangles are proportional] $\Rightarrow \frac{PM}{QM} = \frac{MR}{MS}$...(ii) From Eq (i) and Eq (ii), we get $\Rightarrow \frac{MS}{MR} = \frac{MR}{MS}$ $\Rightarrow MS^2 = MR^2$ $\Rightarrow MS = MR$ From Eq(i), we get $\therefore \frac{PS}{QR} = \frac{MS}{MR}$ $\frac{PS}{QR} = 1$ $\Rightarrow PS = QR$ Hence proved. 37. Let the fraction be $\frac{x}{y}$ $\tfrac{x-2}{y+1} = \tfrac{1}{2}$ 2x - 4 = y + 12x - y = 5.....(1) Also, $\frac{x+4}{y-3} = \frac{3}{2}$ or, 2x + 8 = 3y - 9 or, 2 x - 3 y = -17..... (2) Subtracting eqn. (1) from eqn. (2), 2y = 22 ∴y=11 Substituting this value of y in eqn. (i), 2x -11=5 2x = 5 + 112x = 16 : x=8 Hence, Fraction = $\frac{8}{11}$ OR Suppose the speed of the train be x km/hr and the speed of the car be y km/hr. CASE I Distance covered by car is (600 - 120)km = 480km. Now, Time taken to cover 480 km by train $\frac{120}{x}$ hrs [:: Time = $\frac{\text{Distance}}{\text{Speed}}$] Time taken to cover 480 km by car = $\frac{480}{n}$ hrs $\therefore \frac{120}{x} + \frac{480}{y} = 8$ $\Rightarrow 8\left(\frac{15}{x} + \frac{60}{y}\right) = 8$

 $\Rightarrow \frac{15}{x} + \frac{60}{y} = 1$ $\Rightarrow \frac{15}{x} + \frac{60}{y} - 1 = 0$(i) **CASE II** Distance travelled by car is (600 - 200)km = 400kmNow, Time taken to cover 200km by train $= \frac{200}{x}$ hrs Time taken to cover 400km by train $= \frac{400}{y}$ hrs

In this case the total time of journey is 8 hour 20 minutes

$$\therefore \frac{200}{x} + \frac{400}{y} = 8 \text{ hrs } 20 \text{ minutes} \ \Rightarrow \frac{200}{x} + \frac{400}{y} = 8\frac{1}{3} \left[\because 8 \text{ hrs } 20 \text{ minutes} = 8\frac{20}{60} \text{ hrs} = 8\frac{1}{3} \text{ hrs} \right]$$

 $\Rightarrow \frac{200}{x} + \frac{400}{y} = \frac{25}{3}$ $\Rightarrow x + y = 3$ $\Rightarrow 25\left(\frac{8}{x} + \frac{16}{y}\right) = \frac{25}{3}$ $\Rightarrow \frac{8}{x} + \frac{16}{y} = \frac{1}{3}$ $\Rightarrow \frac{24}{x} + \frac{48}{y} = 1$ $\Rightarrow \frac{24}{x} + \frac{48}{y} - 1 = 0 \dots (ii)$ Putting $\frac{1}{x} = u$ and $\frac{1}{y} = v$ in equations (i) and (ii), we get 15 *u*+ 60*v* -1=0(iii) 24*u*+ 48*v* -1=0(iv) By using cross-multiplication, we have By using cross-multiplication, we have $\frac{u}{60 \times -1 - 48 \times -1} = \frac{-v}{15 \times -1 - 24 \times -1} = \frac{1}{15 \times 48 - 24 \times 60}$ $\Rightarrow \frac{u}{-60 + 48} = \frac{-v}{-15 + 24} = \frac{1}{720 - 1440}$ $\Rightarrow \frac{u}{-12} = \frac{v}{-9} = \frac{1}{-720}$ $\Rightarrow u = \frac{-12}{-720} = \frac{1}{60} \text{ and } v = \frac{-9}{-720} = \frac{1}{80}$ Now, $u = \frac{1}{x} \Rightarrow \frac{1}{60} = \frac{1}{x} \Rightarrow x = 60$ and, $v = \frac{1}{y} \Rightarrow \frac{1}{80} = \frac{1}{y} \Rightarrow y = 80$ Speed of train = 60 km/hmSpeed of train = 60km/hrSpeed of car=80 km/hr. 38. Given Volume of cistern = $150 imes 120 imes 110 ext{cm}^3 = 1980000 ext{cm}^3$ Volume of water = 129600 cm^3 Volume of one brick = $22.5 imes7.5 imes6.5 ext{cm}^3 = 1096.875 ext{cm}^3$ Each brick absorbs one - seventeenth of its volume of water Volume of water absorbed by one brick = $\frac{1}{17}$ × volume of brick $=\frac{1}{17} \times 1096.875 \text{cm}^3$ $= 64.52 \text{ cm}^3$ Let n be the total number of bricks which can be put in the cistern without water overflowing. Then, Volume of water absorbed by n bricks = $n imes rac{1}{17} imes 1096.875 ext{cm}^3$ \therefore Volume of water left in cistern = $(129600 - \frac{n}{17} \times 1096.875) \,\mathrm{cm^3}$ Since the cistern is filled upto the brim. Therefore, Volume of the cistern = Volume of water left in the cistern + Volume of bricks $1980000 = 129600 - \frac{n}{17} \times 1096.875 + n \times 1096.875$ $n imes 1096.875 - rac{n}{17} imes 1096.875 = 1980000 - 129600 \ 1096.875 imes (n - rac{n}{17}) = 1850400$ $1096.875 imes rac{16n}{17} = 1850400$ $17550 imes rac{n}{17} = 1850400 \Rightarrow n = rac{1850400 imes 17}{17550} = 1792.41$ since the number of bricks cannot be in decimals therefore, required number of bricks = 1792 OR Diameter of the well = 2 m Radius of the well, r = 1 m = 100 cmDepth of the well, h = 14 m = 1400 cm Height of embankment, H = 40 cm Let the width of embankment = x cm According to the question, Volume of embankment = Volume of earth dug out $\Rightarrow \quad \pi \left(R^2 - r^2
ight) H = \pi r^2 h$ $\Rightarrow \quad \frac{22}{7} \big[(100 + x)^2 - (100)^2 \big] \times 40 = \frac{22}{7} \times 100 \times 100 \times 1400$

$$\Rightarrow (100 + x)^2 - (100)^2 = \frac{22 \times 100 \times 100 \times 1400}{7 \times 40} \times \frac{7}{22}$$

$$\Rightarrow 10000 + x^2 + 200x - 10000 = 350000$$

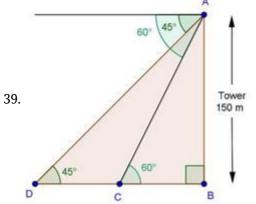
$$\Rightarrow x^2 + 200x - 350000 = 0$$

$$\Rightarrow x^2 + 700x - 500x - 350000 = 0$$

$$\Rightarrow x(x + 700) - 500(x + 700) = 0$$

$$\Rightarrow (x + 700)(x - 500) = 0$$

If x + 700 = 0
x = -700
or,
If x - 500 = 0
x = 500
Since, the width cannot be negative.
Therefore, width of the embankment, x = 500 cm = 5 m



Let AB be the tower of height 150 m and two objects are located when top of tower are observed, makes an angle of depression from the top and bottom of tower are 45^0 and 60^0

In
$$\Delta ABD$$

 $\tan 45^0 = \frac{AB}{BD}$
 $\Rightarrow 1 = \frac{150}{BD}$
 $\Rightarrow BD = 150m$
In ΔABC
 $\tan 60^o = \frac{AB}{BC}$
 $\Rightarrow \sqrt{3} = \frac{150}{BC}$
 $\Rightarrow BC = \frac{150}{\sqrt{3}} \times \frac{\sqrt{3}}{\sqrt{3}}$
 $\Rightarrow BC = \frac{150\sqrt{3}}{3}$
 $\Rightarrow BC = 50\sqrt{3} = 50 \times 1.732 = 86.6m$
 \therefore Distance between two objects = DC
 $= BD - BC$
 $= 150 - 86.6$
 $= 63.4$ m

40.	

0.	Class Interval	Mid - value	d _i = x _i -15	u _i = (x _i -15)/6	Frequency f _i	f _i u _i
	0 - 6	3	-12	-2	-1	-14
	6 – 12	9	-6	-1	5	-5
	12 – 18	15	0	0	10	0
	18 - 24	21	6	1	12	12
	24 - 30	27	12	2	6	12
					N = 40	$\sum f_i u_i$ = 5

Let the assumed mean be (A) = 15 h=6 Mean = $A + h \frac{\sum f_i u_i}{N}$ = $15 + 6 \left(\frac{5}{40}\right)$ = 15 + 0.75= 15.75